遗传算法

本文介绍了遗传算法的基本原理和过程,包括编码染色体、初始化参数、交叉与变异操作,以及如何根据适应度值选择优秀个体。通过对遗传算法的详细解析,帮助读者深化对这一优化方法的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早些时候就开始接触遗传算法,但是编的写程序出来的结果总是让人感觉到一点不安。今天再看了一遍,感觉又有一点收获。

1.我以前脑海中的遗传算法

       第一,将问题转换到一个合适的编码,即所谓的染色体。

       第二,初始化遗传算法的参数:多少染色体N,交叉概率Pc,变异概率Pm。随机初始化遗传算法的祖先染色体。

       第三,交叉,交叉的染色体个数为Pc*N,这里是直接的选取了Pc*N个染色体来进行交叉,当然这些染色体配对都是随机选取了。

       第四,对于所有染色体:包括父代及交叉的染色体进行变异。变异的也是采用Pm*N个数来选择,即每次都一定是变异Pm*N个基因。

       第五,对父代,交叉所得及变异所得的染色体进行按适应度值排序,然后选取前M个染色体作为下一代的父代染色体。

 

2.今天看后所得的收获

     第一,  将问题转换到一个合适的编码,即所谓的染色

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值