图论的介绍

柯尼斯堡七桥问题是图论中的著名问题。这个问题是基于一个现实生活中的事例:当时东普鲁士柯尼斯堡(今日俄罗斯加里宁格勒)市区跨普列戈利亚河两岸,河中心有两个小岛。小岛与河的两岸有七条桥连接。在所有桥都只能走一遍的前提下,如何才能把这个地方所有的桥都走遍?
   

Konigsberg bridges.png7 bridges.svgKonigsburg graph.svg

欧拉连试了好几种走法都不行,这问题可真不简单!他算了一下,走法很多,共有
7×6×5×4×3×2×1=5040(种).
欧拉集中精力研究了这个图形,发现中间每经过一点,总有画到那一点的一条线和从那一点画出来的一条线.这就是说,除起点和终点以外,经过中间各点的线必然是偶数.像上面这个图,因为是一个封闭的曲线,因此,经过所有点的线都必须是偶数才行.而这个图中,经过A点的线有五条,经过B,C,D三点的线都是三条,没有一个是偶数,从而说明,无论从那一点出发,最后总有一条线没有画到,也就是有一座桥没有走到.欧拉终于证明了,要想一次不重复地走完七座桥,那是不可能的

图论推论:具有奇数度的结点个数必须是偶数图:有若干不同顶点与连接其中某些顶点的边所组成的图形就称作为图.
要注意:顶点的位置和线段是直的还是曲的都没有无关紧要的, 而且没有假定所有顶点和边都在一个平面内


图的同构: 两个图G和G'的顶点之间可以建立起一对一的对应, 并且当且仅当当G的顶点Vi 与Vj之间有K条边相连的, G'的相应的顶点Ui'与Uj'之间也有k条边相连, 我们就说G和G'有相同结构.同构的图, 我们认为没有区别的

图的子集: 图G=(V,E)与G'=(V'vE'),G'的顶点集合是G的顶点集合的子集(V'是V的子集),G'的边的集合是G的边的子集(E'是E的子集), 那么我们就是G'是G的子集

简单图: 如果一个图没有环,而且每两个顶点最多只有一条边, 这样的图我们称之为简单图. 在简单图, 链接Vi与Vj的边可以记为(Vi,Vj),

完全图: 如果G是简单图, 而且每两个顶点都有一个边, 我们称之G为完全图, 通常几具有n个顶点的完全图记为Kn, 


二分图: 如果G是简单图, 而且顶点集合V有两个不相关的X={x1,x2,...,xn}与Y={y1,y2,...,ym}组成的,而且xi与xj(1<=i,j<=n),yi与yj(1<=i,j<=n)没有边链接,则G叫做二分图.

完全二分图: 如果在二分图G中, |X|=N,|Y|=M,每个Xi∈X与每个yi∈Y有一条边相连, 则G为完全二分图Kn,m. 如图(c) 完全二分图k5,4


补图:如果G是N个顶点的简单图,从完全图Kn(上图(b))中把属于G的边全部去掉后, 得到的图称为G的补图
*(G^), 即G的补图是G^, 如下图
度数: 如果图G的两个顶点Vi和Vj之间有一条边的相连, 我们就说Vi和Vj相邻, 否者就说不相邻, 如果V是边e的一个端点, 就说顶点V和边e是相邻的,e是从V引出的边. 从一个顶点V引出边的条数, 就称为V的度, 记为d(V)
注释: 知道奇数个面, 每个面有奇数条边; 一个边对应两个点, 两个面公用一条棱(边), 相当于一边面的一条边,只有一个点是自己单独拥有的;顶点个数=面*边 奇数乘以奇数,还是奇数
顶点个数奇数, 每个点的度也是奇数,
端点和内点:
距离: U,V两点的距离是指U,V之间最短的轨道长度, 记作D(U,V),若U,V两点有道路, 则称U与V相连通, 图G中任意两点相连通, 则G是连通图
 

        显然, 由于下图七桥问题有4个奇数点, 因此不能一笔画成,即一个旅行者要重复无遗漏的走完下图的路是不可能的


树:
树:没有圈的连通图称作树, 通常用T表示. T中d(V)=1的顶点叫做叶; 每个连通分支皆为树的图叫做森林, 孤立的点叫做平凡树.
 

下面我们通过数的顶点与边之间的关系, 揭示一下树的图论特征
    如果一个树的顶点树是N, 那它的边一定是M=N-1; 倒过来, 一个具有N个顶点,M=N-1条边的连通图G, 一定十一棵树
树T具有以下性质:
1.在T中去掉一边后所得图G一定不是连通的,
2.在T中添加一条得到的图G一定有圈
3.T中的每一对顶点V和V'之间有且只有一条轨道相连.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值