2020-11-29

20

20.某产品的次品率为0.1,检察员每天检查四次,每次随机的取10件产品进行检验,如果发现其中的次数多于1,就去调整设备,以X表示一天中调整设备的次数,求E(X).

解:知识点:(二项分布分布律E(X)

设一次抽检中次品数为Y,则Y符合 Y~B(10,0.1)的二项分布
∴ P ( 调 整 设 备 ) = P ( Y > 1 ) = 1 − P ( Y = 0 ) − P ( Y = 1 ) = 1 − 0. 9 10 − C 10 1 0. 9 9 0.1 = 0.2639 \therefore P(调整设备)=P(Y>1) = 1-P(Y=0)-P(Y=1)=1-0.9^{10}-C_{10}^10.9^90.1=0.2639 P()=P(Y>1)=1P(Y=0)P(Y=1)=10.910C1010.990.1=0.2639
则调整设备次数X符合 X~B(4,0.2639)的二项分布

那么可知他的分布律为(p=0.2639):

X01234
P ( 1 − p ) 4 (1-p)^4 (1p)4 4 p ( 1 − p ) 3 4p(1-p)^3 4p(1p)3 6 p 2 ( 1 − p ) 2 6p^2(1-p)^2 6p2(1p)2 4 p 3 ( 1 − p ) 4p^3(1-p) 4p3(1p) p 4 p^4 p4

所以
E ( X ) = 0 ∗ ( 1 − p ) 4 + 1 ∗ 4 p ( 1 − p ) 3 + 2 ∗ 6 p 2 ( 1 − p ) 2 + 3 ∗ 4 p 3 ( 1 − p ) + 4 ∗ p 4 E(X)=0*(1-p)^4+1*4p(1-p)^3+2*6p^2(1-p)^2+3*4p^3(1-p)+4*p^4 E(X)=0(1p)4+14p(1p)3+26p2(1p)2+34p3(1p)+4p4

E ( X ) = 4 p = 4 ∗ 0.2639 = 1.0556 E(X)=4p=4*0.2639=1.0556 E(X)=4p=40.2639=1.0556

21

21.设随机变量X服从参数为λ的泊松分布,且已知E[(X-1)(X-2)]=1,求λ。

解:知识点:(泊松分布E(X)与D(X)的关系

由题知X服从参数为λ的泊松分布,因此有:
E(X)=λ,D(X)=λ,

E[(X-1)(X-2)]=E[X²-3X+2]=E[X²]-3E[X]+2=D(X)+{E(X)}²-3E{X}+2
=λ+λ²-3λ+2=1
λ=1


E [ ( x − 1 ( x − 2 ) ) ] = E [ x 2 − 3 x + 2 ] = E [ x 2 ] − E [ 3 x ] − E [ 2 ] = D [ x ] + ( E [ x ] ) 2 − 3 E [ x ] + 2 = λ + λ 2 − 3 λ + 2 E[(x-1(x-2))]=E[x^2-3x+2]=E[x^2]-E[3x]-E[2]=D[x]+(E[x])^2-3E[x]+2=λ+λ^2-3λ+2 E[(x1(x2))]=E[x23x+2]=E[x2]E[3x]E[2]=D[x]+(E[x])23E[x]+2=λ+λ23λ+2

λ 2 − 2 λ + 2 = 1 λ^2-2λ+2=1 λ22λ+2=1
则λ=1

24

24.已知随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,Z=X-2Y+7,求D(Z)

解:知识点:(正太分布D(X)

由正太分布的性质可知,Z也是正太分布

且Z=X-2Y+7 ~ N(-3-2*2+7,1+(-2)²) = N(-0,5)

所以D(Z)=5

25

25.设随机变量X,Y相互独立,且X~N(720,302),Y~N(640,252),设 Z 1 = 2 X + Y Z_1=2X+Y Z1=2X+Y Z 2 = X − Y Z_2=X-Y Z2=XY,求随机变量 Z 1 , Z 2 Z_1,Z_2 Z1,Z2的分布并求概率P{X>Y}

解:知识点:(正太分布

由正太分布的性质可知, Z 1 , Z 2 Z_1,Z_2 Z1,Z2也是正太分布

E ( Z 1 ) = 2 E ( X ) + E ( Y ) = 720 ∗ 2 + 640 = 2080 , D ( Z 1 ) = 4 D ( X ) + D ( Y ) = 4225 = 6 5 2 E(Z_1)=2E(X)+E(Y)=720*2+640=2080,D(Z_1)=4D(X)+D(Y)=4225=65^2 E(Z1)=2E(X)+E(Y)=7202+640=2080,D(Z1)=4D(X)+D(Y)=4225=652

E ( Z 2 ) = E ( X ) − E ( Y ) = 720 − 640 = 80 , D ( Z 2 ) = D ( X ) + D ( Y ) = 1525 E(Z_2)=E(X)-E(Y)=720-640=80,D(Z_2)=D(X)+D(Y)=1525 E(Z2)=E(X)E(Y)=720640=80,D(Z2)=D(X)+D(Y)=1525

∴ Z 1 \therefore Z_1 Z1~N(2080,652), Z 2 Z_2 Z2~N(80,1525)

P(X>Y)=P(X-Y>0)= P ( Z 2 > 0 ) P(Z_2>0) P(Z2>0)=1- P ( Z 2 ≤ 0 ) = 1 − Φ ( 0 − 80 1525 ) = Φ ( 2.05 ) = 0.9798 P(Z_2\leq0)=1-\Phi(\frac{0-80}{\sqrt{1525}})=\Phi(2.05)=0.9798 P(Z20)=1Φ(1525 080)=Φ(2.05)=0.9798

26

26.设随机变量(X,Y)的联合分布律为:

X\Y-1`01
-11/81/81/8
01/801/8
11/81/81/8

试求:(1)cov(X,Y),pxy(2)问X,Y是否相关?是否独立?

解:知识点:(协方差)

(1)

E ( X ) = − 1 ∗ 3 8 + 0 ∗ 2 8 + 1 ∗ 3 8 = 0 E(X)=-1*\frac{3}{8}+0*\frac{2}{8}+1*\frac{3}{8}=0 E(X)=183+082+183=0

E ( Y ) = − 1 ∗ 3 8 + 0 ∗ 2 8 + 1 ∗ 3 8 = 0 E(Y)=-1*\frac{3}{8}+0*\frac{2}{8}+1*\frac{3}{8}=0 E(Y)=183+082+183=0

E ( X Y ) = ( − 1 ) ∗ ( − 1 ) ∗ 1 8 + ( − 1 ) ∗ 1 ∗ 1 8 + 1 ∗ ( − 1 ) ∗ 1 8 + 1 ∗ 1 ∗ 1 8 = 0 E(XY)=(-1)*(-1)*\frac{1}{8}+(-1)*1*\frac{1}{8}+1*(-1)*\frac{1}{8}+1*1*\frac{1}{8}=0 E(XY)=(1)(1)81+(1)181+1(1)81+1181=0

∴ C o v ( X , y ) = E ( X Y ) − E ( x ) E ( Y ) = 0 − 0 = 0 \therefore Cov(X,y)=E(XY)-E(x)E(Y)=0-0=0 Cov(X,y)=E(XY)E(x)E(Y)=00=0

∴ ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) = 0 \therefore \rho xy = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=0 ρxy=D(X) D(Y) Cov(XY)=0

(2)

因为Cov(X,y)=0 所以相关

当X=1,Y=1时

P ( X = 1 , Y = 1 ) = 1 8 ≠ P ( X = 1 ) ∗ P ( Y = 1 ) = 3 8 ∗ 3 8 P(X=1,Y=1)=\frac{1}{8} \neq P(X=1)*P(Y=1)=\frac{3}{8}*\frac{3}{8} P(X=1,Y=1)=81=P(X=1)P(Y=1)=8383

∴ 不 独 立 \therefore 不独立

28

28.设随机向量(X,Y)的联合概率密度函数为
f ( x , y ) = { 1 8 ( x + y ) , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 , 其 他 f(x,y)=\begin{cases} \frac{1}{8}(x+y) ,0\leq x \leq 2, 0\leq y \leq 2, \\ 0 ,其他\end{cases} f(x,y)={81(x+y),0x2,0y2,0,
求X,Y的协方差cov(x,y)和相关系数 ρ x y \rho xy ρxy

解:知识点:(协方差联合概率密度函数和联合分布函数

E ( X ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x f ( x , y ) d x d y = { ∫ 0 2 ∫ 0 2 x 1 8 ( x + y ) d x d y , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 , 其 他 E(X) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xf(x,y)dxdy=\begin{cases} \int_{0}^{2}\int_{0}^{2}x\frac{1}{8}(x+y) dxdy ,0\leq x \leq 2, 0\leq y \leq 2, \\ 0 , 其他 \end{cases} E(X)=xf(x,y)dxdy={0202x81(x+y)dxdy,0x2,0y2,0,

∫ 0 2 ∫ 0 2 x 1 8 ( x + y ) d x d y = ∫ 0 2 ∫ 0 2 ( 1 8 x 2 + 1 8 x y ) d x d y = ∫ 0 2 ( 1 24 x 3 + 1 16 x 2 y ) ∣ 0 2 d y = ∫ 0 2 ( 1 3 + 1 4 y ) d y = ( 1 3 y + 1 8 y 2 ) ∣ 0 2 = 7 6 \int_{0}^{2}\int_{0}^{2}x\frac{1}{8}(x+y)dxdy=\int_{0}^{2}\int_{0}^{2}(\frac{1}{8}x^2+\frac{1}{8}xy)dxdy=\int_{0}^{2}(\frac{1}{24}x^3+\frac{1}{16}x^2y)|_0^2dy=\int_{0}^{2}(\frac{1}{3}+\frac{1}{4}y)dy=(\frac{1}{3}y+\frac{1}{8}y^2)|_0^2=\frac{7}{6} 0202x81(x+y)dxdy=0202(81x2+81xy)dxdy=02(241x3+161x2y)02dy=02(31+41y)dy=(31y+81y2)02=67

E ( Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ y f ( x , y ) d x d y = { ∫ 0 2 ∫ 0 2 y 1 8 ( x + y ) d x d y , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 , 其 他 E(Y) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}yf(x,y)dxdy=\begin{cases} \int_{0}^{2}\int_{0}^{2}y\frac{1}{8}(x+y) dxdy ,0\leq x \leq 2, 0\leq y \leq 2, \\ 0 , 其他 \end{cases} E(Y)=yf(x,y)dxdy={0202y81(x+y)dxdy,0x2,0y2,0,

∫ 0 2 ∫ 0 2 y 1 8 ( x + y ) d x d y = ∫ 0 2 ∫ 0 2 ( 1 8 x y + 1 8 y 2 ) d x d y = ∫ 0 2 ( 1 16 x 2 y + 1 8 y 2 x ) ∣ 0 2 d y = ∫ 0 2 ( 1 4 + 1 4 y ) d y = ( 1 8 y 2 + 1 12 y 3 ) ∣ 0 2 = 7 6 \int_{0}^{2}\int_{0}^{2}y\frac{1}{8}(x+y)dxdy=\int_{0}^{2}\int_{0}^{2}(\frac{1}{8}xy+\frac{1}{8}y^2)dxdy=\int_{0}^{2}(\frac{1}{16}x^2y+\frac{1}{8}y^2x)|_0^2dy=\int_{0}^{2}(\frac{1}{4}+\frac{1}{4}y)dy=(\frac{1}{8}y^2+\frac{1}{12}y^3)|_0^2=\frac{7}{6} 0202y81(x+y)dxdy=0202(81xy+81y2)dxdy=02(161x2y+81y2x)02dy=02(41+41y)dy=(81y2+121y3)02=67

E ( X Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x y f ( x , y ) d x d y = { ∫ 0 2 ∫ 0 2 x y 1 8 ( x + y ) d x d y , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 , 其 他 E(XY) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xyf(x,y)dxdy=\begin{cases} \int_{0}^{2}\int_{0}^{2}xy\frac{1}{8}(x+y) dxdy ,0\leq x \leq 2, 0\leq y \leq 2, \\ 0 , 其他 \end{cases} E(XY)=xyf(x,y)dxdy={0202xy81(x+y)dxdy,0x2,0y2,0,

∫ 0 2 ∫ 0 2 x y 1 8 ( x + y ) d x d y = ∫ 0 2 ∫ 0 2 ( 1 8 x 2 y + 1 8 x y 2 ) d x d y = ∫ 0 2 ( 1 24 x 3 y + 1 16 x 2 y 2 ) ∣ 0 2 d y = ∫ 0 2 ( 1 3 y + 1 4 y 2 ) d y = ( 1 6 y 2 + 1 12 y 3 ) ∣ 0 2 = 4 3 \int_{0}^{2}\int_{0}^{2}xy\frac{1}{8}(x+y)dxdy=\int_{0}^{2}\int_{0}^{2}(\frac{1}{8}x^2y+\frac{1}{8}xy^2)dxdy=\int_{0}^{2}(\frac{1}{24}x^3y+\frac{1}{16}x^2y^2)|_0^2dy=\int_{0}^{2}(\frac{1}{3}y+\frac{1}{4}y^2)dy=(\frac{1}{6}y^2+\frac{1}{12}y^3)|_0^2=\frac{4}{3} 0202xy81(x+y)dxdy=0202(81x2y+81xy2)dxdy=02(241x3y+161x2y2)02dy=02(31y+41y2)dy=(61y2+121y3)02=34

∴ C o v ( X , y ) = E ( X Y ) − E ( x ) E ( Y ) = 4 3 − 7 6 = − 1 36 \therefore Cov(X,y)=E(XY)-E(x)E(Y)=\frac{4}{3}-\frac{7}{6}=-\frac{1}{36} Cov(X,y)=E(XY)E(x)E(Y)=3467=361

D ( X ) = E ( X 2 ) − E ( X ) 2 = 5 3 − ( 7 6 ) 2 = 11 36 D(X)=E(X^2)-E(X)^2=\frac{5}{3}-(\frac{7}{6})^2=\frac{11}{36} D(X)=E(X2)E(X)2=35(67)2=3611

同理可得 D ( Y ) = 11 36 D(Y)=\frac{11}{36} D(Y)=3611

∴ ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) = − 1 36 11 36 = − 1 11 \therefore \rho xy = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=\frac{-\frac{1}{36}}{\frac{11}{36}}=-\frac{1}{11} ρxy=D(X) D(Y) Cov(XY)=3611361=111

31

31.若X,Y的密度函数为

f ( x , y ) = { 1 π , x 2 + y 2 ≤ 1 , 0 , x 2 + y 2 > 1 f(x,y)=\begin{cases} \frac{1}{\pi} ,x^2+y^2 \leq1, \\ 0 ,x^2+y^2 >1\end{cases} f(x,y)={π1,x2+y21,0,x2+y2>1
试证:X与Y不想关,但他们不独立

img

二项分布

在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。

公式:
P ( X = k ) = C n k p k ( 1 − p ) k , k = 0 , 1 , 2 ⋯ P(X=k)=C_n^k{p^k}{(1-p)^k},k=0,1,2 \cdots P(X=k)=Cnkpk(1p)k,k=0,1,2
其期望E(X)=np

方差D(X)=np(1-p)

参考链接:二项分布

分布律

将事物发生的概率和情况用列表的形式或者函数的形式展现

泊松分布

泊松分布的概率函数为:
P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2 ⋯ P(X=k)=\frac{λ^k}{k!}e^{-λ},k=0,1,2 \cdots P(X=k)=k!λkeλ,k=0,1,2
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布的期望(E(X))和方差(D(X))均为λ

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

参考链接:泊松分布

正太分布

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线

随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布

正太分布的E(X)=μ,D(X)=σ2

公式:
X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2)
性质:

  • 如果 X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2),那么对于实数a,b, a X + b − N ( a μ + b , ( a σ ) 2 ) aX+b-N(a\mu+b,(a\sigma)^2) aX+bN(aμ+b,(aσ)2)

  • 如果 X − N ( μ x , σ x 2 ) X-N(\mu_x,\sigma_x^2) XN(μx,σx2) Y − N ( μ y , σ y 2 ) Y-N(\mu_y,\sigma_y^2) YN(μy,σy2)那么他们的和与差也满足正太分布

    • U = X + Y − N ( μ x + μ y , σ x 2 + σ y 2 ) U=X+Y-N(\mu_x+\mu_y,\sigma_x^2+\sigma_y^2) U=X+YN(μx+μy,σx2+σy2)
    • V = X − Y − N ( μ x − μ y , σ x 2 + σ y 2 ) V=X-Y-N(\mu_x-\mu_y,\sigma_x^2+\sigma_y^2) V=XYN(μxμy,σx2+σy2)
    • 如果X与Y的方差相等,则U与V两者是相互独立的。
  • 后面两个性质太难,一般不考,可以自学,详情见下面链接

参考链接:正太分布

E(X)

概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

公式:
E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk
参考链接:期望

D(X)

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

公式:
σ 2 = ∑ ( X − μ ) 2 N \sigma^2=\frac{\sum (X-\mu)^2}{N} σ2=N(Xμ)2
其中 σ 2 \sigma^2 σ2为总体方差,X为变量, μ \mu μ为总体均值,N为总体例数。

实际工作中,总体均数难以得到时,应用样本统计量代替总体参数。

在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]2}存在,则称E{[X-E(X)]2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“随机变量值与其期望值之差的平方和”的期望值。

参考链接:方差

E(X)与D(X)的关系

D(X)指方差,E(x)指期bai望。

在概率论中D(X)的求法是这样的
D ( X ) = E [ ( X − E ( X ) ) 2 ] D(X)=E[(X-E(X))^2] D(X)=E[(XE(X))2]
化简就得
D ( X ) = E [ ( X − E ( X ) ) 2 ] = E [ X 2 − 2 X E ( X ) + E ( X ) ] 2 = E ( X 2 ) − 2 E ( X ) 2 + E ( X ) 2 = E ( X 2 ) − E ( X ) 2 D(X)=E[(X-E(X))^2]=E[X^2-2XE(X)+E(X)]^2=E(X^2)-2E(X)^2+E(X)^2=E(X^2)-E(X)^2 D(X)=E[(XE(X))2]=E[X22XE(X)+E(X)]2=E(X2)2E(X)2+E(X)2=E(X2)E(X)2
所以
D ( X ) = E ( X 2 ) − E ( X ) 2 D(X)=E(X^2)-E(X)^2 D(X)=E(X2)E(X)2
通过这个公式就可以在E(X)和E(X²)以及D(X)中互相转换

协方差

概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 [1]

期望值分别为E[X]与E[Y]的两个实随机变量XY之间的协方差Cov(X,Y)定义为:
C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = E [ X Y − X E [ Y ] − Y E [ X ] + E [ X ] E [ Y ] ] Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E[XY-XE[Y]-YE[X]+E[X]E[Y]] Cov(X,Y)=E[(XE(X))(YE(Y))]=E[XYXE[Y]YE[X]+E[X]E[Y]]

= E [ X Y ] − E [ Y ] E [ X ] − E [ X ] E [ Y ] + E [ X ] E [ Y ] = E [ X Y ] − E [ X ] E [ Y ] =E[XY]-E[Y]E[X]-E[X]E[Y]+E[X]E[Y]=E[XY]-E[X]E[Y] =E[XY]E[Y]E[X]E[X]E[Y]+E[X]E[Y]=E[XY]E[X]E[Y]

从直观上来看,协方差表示的是两个变量总体误差的期望。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果XY是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。

但是,反过来并不成立。即如果XY的协方差为0,二者并不一定是统计独立的。

协方差为0的两个随机变量称为是不相关的。(但不一定独立)

协方差与方差之间有如下关系:

D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

D(X-Y)=D(X)+D(Y)-2Cov(X,Y)

协方差的性质:

(1)Cov(X,Y)=Cov(Y,X);

(2)Cov(aX,bY)=abCov(X,Y),(ab是常数);

(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。

由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。

协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:

定义 ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) \rho xy=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρxy=D(X) D(Y) Cov(XY)

ρXY=0,则称X与Y不线性相关。

ρXY=0的充分必要条件是Cov(X,Y)=0,亦即不相关和协方差为零是等价的。

ρXY是随机变量X和Y的相关系数,则有

(1)∣ρXY∣≤1;

(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)

参考链接:协方差

联合概率密度函数和联合分布函数

联合分布函数:简单理解就是x,y所有取值所构成的点的连线,将这些连线用函数展示

联合分布函数(joint distribution function)亦称多维分布函数。以二维情形为例,设(X,Y)是二维随机变量,x,y是任意实数,二元函数:F(x,y)=P({X≤x∩Y≤y})=P(X≤x,Y≤y),被称二维随机变量(X,Y)的分布函数,或称为X和Y的联合分布函数。

联合密度函数:简单理解就是x,y 这些取值 对应的概率 组成的函数

联合密度函数是一个描述两个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。
F ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y F(x,y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy F(x,y)=f(x,y)dxdy
F(X,Y)为联合分布函数

f(x,y)为联合概率密度函数

已知f(x,y)求边缘分布(只需对相应的xy求积分就可以了,如x的边缘分布就对y求积分)
F x ( X ) = ∫ − ∞ ∞ f ( x , y ) d y F_x(X) =\int_{-\infty}^{\infty}f(x,y)dy Fx(X)=f(x,y)dy

F y ( Y ) = ∫ − ∞ ∞ f ( x , y ) d x F_y(Y) =\int_{-\infty}^{\infty}f(x,y)dx Fy(Y)=f(x,y)dx

同理求E(X)、E(Y),只需要将f(x,y)乘以x或者y再求积分就可以了
E ( X ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x f ( x , y ) d x d y E(X) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xf(x,y)dxdy E(X)=xf(x,y)dxdy

E ( Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ y f ( x , y ) d x d y E(Y) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}yf(x,y)dxdy E(Y)=yf(x,y)dxdy

参考链接:联合分布函数联合密度函数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值