Given a sequence a
1
,a
2
,a
3
......a
n
, your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Case 1: 14 1 4 Case 2: 7 1 6
题意:给一串数,求最大的连续子串的和,并打印起点和终点。
坑里带坑,无语了。
本题用动态规划,假设前面有长度为n-1的子串和为sum,如果sum<0,那么下一个数没有必要算作前一个子串的一部分,重开一个子串。
注意序列全是负数时。
每次子串更新时,记录开始点,遇到最大值,更新开始点,和最大值的点。
#include<stdio.h>
#include<math.h>
#include<ctype.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int t,n,a[1000001],i,j;
int main()
{
int t,n,i,a[100001],e=1;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int maxn,start1=1,start2=1,end1=1;
scanf("%d",&a[1]);
for(i=2,maxn=a[1];i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i-1]>=0)a[i]+=a[i-1];
else start2=i;
if(a[i]>maxn)
maxn=a[i],end1=i,start1=start2;
}
if(e>=2)
printf("\n");
printf("Case %d:\n%d %d %d\n",e,maxn,start1,end1);
e++;
}
}