有人说,Python即使不是最好的编程语言,也是最受欢迎的语言之一。因为它简洁易用,功能强大,对初学者也很友好。在众多培训机构的小广告中,“学了Python就能批量处理Excel表格”,“Python是实现办公自动化的利器,从此告别996”之类的口号随处可见。但实际工作中真是如此吗?
Excel基本每台电脑都有, Python就差远了。很多人vlookup都不会用, Python肯定玩不转的。
非专业人员用Excel 的宏就足够了,不可能为了搞Excel去学编程。语法再简单,也要有一定的编程思维,对非开发人员要求还是高了。
主要的是Excel学习的时间长,比如大学很多专业都会教Excel,不一定会学Python。另外一个因素是,年长一点的人都习惯于用Excel,所以部门里面的培训都以Excel为主,Python要自学,而且没有人指导。Excel是必需技能(大部分人都用)。Python流行的时间晚了一点,还没有很多人玩得很好,起码没有玩得比Excel好。
接下来对Excel和python进行一下优缺点的分析
一、Excel数据分析
如果是一般的数据分析工作人员,只需要粗通数据分析,没有百万级以上的数据处理需求,我个人优先推荐excel而不是Python。
首先excel的好处是图形化界面容易上手,然后excel在管理业务表格的时候,excel三大件(函数,数透,VBA)组合起来已经解决了很多数据分析的需求。
函数库相当丰富,函数和数组函数相结合,基本上就相当于很多个小的python包了,能解决很多字符处理、数学统计运算、逻辑判断等功能。函数的组合使用也有很多技巧。
1、比如,数据的快速分组
传统用法中,如果要对数据进行分组,用Python写非常复杂的函数,效率非常的低,但是使用Excel中透视表就非常的便捷,动画演示:
2、再比如,之作高级交互表
传统的图表要想制作出交互功能,只有通过插入组件,或者使用数据验证制作下拉菜单进行交互。
而利用数据透视表,可以便捷的插入切片器、动态透视图、日程等等,制作出非常强大的交互效果。动画演示:
如果使用Python进行代码编写就变得非常的复杂,甚至我们还不能编写出比较实用的代码。
3、Excel的缺点
跨平台性低
Excel只能运行在Windows和Mac平台,这个可以说是Excel最大的劣势点了。
而数据库可以运行在任意平台,企业中使用Linux系统的不在少数。所以,Excel的这一劣势点被无限放大。
能处理的数据量小
经常使用Excel的朋友应该都发现过这个问题,当Excel的数据量过大的时候,其查询和计算速度会有明显的下降,甚至不能正常运行,这对于工作来说实在是不可接受的。
因此,就需要使用数据库产品,因为数据库产品的存储更大,可以让我们存储更多的数据信息。
对于EXCEL的新手,如果你想系统学习 Excel,可以看一个系列课程,系统的学习excel,这样可以学的快一些。
在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
多多交流问题,互帮互助,这里有不错的学习教程和开发工具。
(python兼职资源+python全套学习资料)
二、Python数据分析
下面,我们客观来说下Python数据分析吧。
1、简单易学
Python最大的优点那就是简单易学。
很多学过Java的朋友都知道,Python语法简单的多,代码十分容易被读写,最适合刚刚入门的朋友去学习。
比如一个Hello World,Python只需要一句print(“Hello World”)。
而比较复杂的Java需要声明一个HelloWorld对象,需要下面几行代码才能打印一个Hello World。
public class HelloWorld {
public static void main(String[] args) {
System.out.println(“Hello World”);
} }
即使你没学过编程,也能够看懂Python代码,因为Python代码和英语阅读很类似。
2、办公自动化
有一句古话:工欲善其事,必先利其器。
这时不妨学会借助Python这个小工具,提升效率。帮我们快速完成自动抓取资料、提取关键词、分析数据、自动下载等工作。
这就如同在别人还在吭哧吭哧爬楼梯的时候,你已经坐上了直梯,当然更爽了!不仅能保住一头飘逸的秀发,还能有更多时间拥有自己的生活!
用python批量读写CSV文件
我们只需要写一个脚本就可以批量读写excel文件,如果下次遇到其他相同场景的,我们也可以使用Python脚本进处理。
在不改变数据源的情况下,代码输出结果一致,不会随着时间和人员的变化而出现不同的分析结果,可复现性和可使用性强。
制作数据报表
我们数据分析工作人员,经常遇到制作数据报表问题。如果我们遇到多次完全一样需求的数据报表,采用Excel进行制作,显得十分低效。
如果使用Python编成代码,并封装函数,然后我们直接调用,只需要修改路径,同样可以达到数据报表的需求,这样显得更加高效。
3、丰富的第3方库
对于Python有很多数据分析的第三方库库,如Numpy,Pandas,Matplotlib,Seaborn,Scipy,StatModels, Pyecharts,Bokeh,Blaze,Plotly,NetWorkX,Biopython,SymPy和gwpy等。
它们为Python数据分析,相对于excel提供了更加高级的工具和做法。
制作全国主要城市空气质量分布图
机器模型的建立和分析
现在很多公司的数据工作已经不是简单的report了,而是需要分析,甚至建模分析。这方面,python 的优势是巨大的。
使用Python作数据分析的重要原因之一在与机器学习,Python拥有丰富且强大的机器学习、深度学习库。
最后
在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
多多交流问题,互帮互助,这里有不错的学习教程和开发工具。
(python兼职资源+python全套学习资料)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后,千万别辜负自己当时开始的一腔热血,一起变强大变优秀。