stable diffusion comfyui的api使用教程

一、为什么要使用comfyui的api?对比webui的api,它有什么好处?

1、自带队列
2、支持websocket
3、无需关心插件是否有开放api接口,只要插件在浏览器中可以正常使用,接口就一定可以使用
4、开发人员只需关心绘图流程的搭建
5、切换模型、进度查询soeasy
6、轻松实现图片生成时的渐变效果
7、支持中断绘图任务
8、无需繁琐的base64图片转换

其实我们之前一直都是用web-ui的api,最近web-ui被我们给废弃掉了,主要是因为comfyui基本上解决了webui做开发所有的弊端,首先列队的问题不用去管,它自己有列队,插件这块是最方便的,用上comfyui以后就不要去管插件是怎么调用的,只要你在工作流里面用了什么插件,保存为api之后,他直接下发后台就会自动去运行,也不用去管插件具体怎么调用。如果是webui,有些比较良心的插件,直接把接口写好,然后暴露出来, 如果没写的话,你用起来就会非常的麻烦,还得去研究它是怎么去调用的。所以 ,小伙伴们,别再执着用webui的api了,那个确实反人类,假如做开发的话问题会很多,比较烦人,就像获取任务进度,还有这个线程锁,切换模型这块都非常繁琐。我为了研究那东西 ,看代码看得头都大了 ,整整研究了一个月才把代码改好。

二、接口详解

本文主要介绍 stable diffusion API 调用,准确来说是对 stable diffusion comfyui 的 API 调用。需要apifox接口文件的可以查看:
https://gitee.com/BTYY/wailikeji-chatgpt/blob/master/comfyui-api.md

1、绘图接口:POST /prompt

注意:该接口只做绘图任务的下发,然后返回任务ID信息。并不会直接返回最终的结果图!

与webui的api不同的是,comfyui的api并没有单独区分文生图、图生图的接口,而是所有的绘图任务的下发全部都使用POST /prompt。那具体是文生图、图生图、又或者是换脸、倒推关键词等,取决于你的参数!

需要上传的参数只有两个

请求参数
名称类型必选说明
client_idstring任务ID,由客户端生成,用于标记任务是谁发起的
promptjson任务参数
返回参数
名称类型说明
prompt_idstring任务ID
numberint当前任务序号,可用于后续获取需要等待任务数的计算
node_errorsjson错误信息

返回示例

{
    "prompt_id": "bd2cfa2c-de87-4258-89cc-d8791bc13a61",
    "number": 501,
    "node_errors": {}
}

使用说明

clientId:任务ID,由客户端生成,用于标记任务是谁发起的,相当于告诉comfyui,该绘图任务是由用户A发起的,后续comfyui就会通过websocket将属于用户A的绘图信息推送给你

prompt:prompt所传的是一个json数据,它是由comfyui浏览器通过保存api生成的json数据,如下图
在这里插入图片描述

至于正反、提示词、模型、vae、图片尺寸、批次、提示词相关性、随机种子、采样器、降噪值等参数,只需替换json中对应的参数为用户上传的参数即可
在这里插入图片描述
比如用户上传的图片尺寸是768*512,那你只需将json数据中的width改为768、height改为512即可,其他的参数也是同样的道理!

2、websocket:/ws?clientId=XXXXXXXX

client_id后面的参数即为上面/prompt接口中上传给comfyui的client_id,假如没有上传client_id,那comfyui就不知道连上该websocket的用户是谁,也就无法进行信息推送!comfyui拿到client_id后,即可知道当前是哪个用户,后续就会通过websocket将属于该用户的绘图信息精准推送给他

注意:websocket只需做监听处理,无需通过websocket向comfyui发送任何消息

websocket数据解析:
主要有两种数据格式:
1、文本数据,文本数据主要通知以下几个绘图信息:
通知任务变更、当前执行的步骤、进度
2、二进制数据,即图片预览信息

(一)文本数据详解:
(1)任务变更通知:
{
    "type":"status",
    "data":{
        "status":{
            "exec_info":{
                "queue_remaining":7
            }
        }
    }
}

当你收到type为status信息时,这是comfyui在告诉你,当前任务数发生变更,queue_remaining是指当前还有多少个任务需要处理。

注意,此处的queue_remaining并不是告诉你在你的任务之前还有多少个任务需要处理!而是总的!
所以,如果你也想像我一样(见下图),当还没轮到你的绘图任务时,显示还需等待多少个任务,你就需要借助comfyui的另一个接口:GET /queue:获取详细任务队列信息,正在运行的以及挂起的。该接口会返回挂起的任务信息,其中有prompt_id信息和number信息,你可以根据这number信息获取到当前任务排在第几位。具体如何调用,这里就不进行展开!

在这里插入图片描述

(2)当前任务开始执行:
{
    "type":"execution_start",
    "data":{
        "prompt_id":"3935f7c3-ec38-4d94-843f-86fe86c6d384"
    }
}

当你收到type为execution_start信息时,这是comfyui在告诉你,你的任务id,prompt_id为“3935f7c3-ec38-4d94-843f-86fe86c6d384”的任务当前正在被执行

(3)当前任务执行的步骤信息:
{
    "type":"executing",
    "data":{
        "node":"5",
        "prompt_id":"3935f7c3-ec38-4d94-843f-86fe86c6d384"
    }
}

当你收到type为executing信息时,这是comfyui在告诉你,你的任务id,prompt_id为“3935f7c3-ec38-4d94-843f-86fe86c6d384”的任务当前正在执行节点5的步骤,此处你可以解析到前端,显示当前执行的步骤名称,如下图所示
在这里插入图片描述

(4)当前进度信息:
{
    "type":"progress",
    "data":{
        "value":1,
        "max":10
    }
}

当你收到type为progress信息时,这是comfyui在告诉你,当前步骤执行的进度,value是当前的步数,max是总的步数,如下图所示
在这里插入图片描述

(5)绘图结束:
{
    "type":"executing",
    "data":{
        "node":null,
        "prompt_id":"37099310-a790-44f4-8d13-4f4d5f69c891"
    }
}

绘图结束时,type类型仍然是executing,和前面的(3)是一样的,区别主要在于node为null,也就是当type=executing,且node=null的时候,说明流程已经跑完,此时需要通过接口GET /history/{prompt_id}获取输出的图片信息。底下是通过history获取到的图片信息:

{
    "37099310-a790-44f4-8d13-4f4d5f69c891": {
    	略。。。。。。。。。。
        "outputs": {
            "18": {
                "images": [
                    {
                        "filename": "ComfyUI_temp_slqio_00001_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_slqio_00002_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_slqio_00003_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_slqio_00004_.png",
                        "subfolder": "",
                        "type": "temp"
                    }
                ]
            },
            "22": {
                "images": [
                    {
                        "filename": "ComfyUI_temp_rfvdr_00001_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_rfvdr_00002_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_rfvdr_00003_.png",
                        "subfolder": "",
                        "type": "temp"
                    },
                    {
                        "filename": "ComfyUI_temp_rfvdr_00004_.png",
                        "subfolder": "",
                        "type": "temp"
                    }
                ]
            },
            "24": {
                "images": [
                    {
                        "filename": "ComfyUI_00702_.png",
                        "subfolder": "",
                        "type": "output"
                    },
                    {
                        "filename": "ComfyUI_00703_.png",
                        "subfolder": "",
                        "type": "output"
                    },
                    {
                        "filename": "ComfyUI_00704_.png",
                        "subfolder": "",
                        "type": "output"
                    },
                    {
                        "filename": "ComfyUI_00705_.png",
                        "subfolder": "",
                        "type": "output"
                    }
                ]
            }
        }
    }
}

outputs中的内容就是最终生成的图片信息,我们通过将图片信息进行拼接,即可获取到图片的url访问地址,
例如:ComfyUI_00702_.png这张图片,其拼接后的访问地址就是:
http://127.0.0.1:8188/view?filename=ComfyUI_00702_.png&type=output

该地址实际是使用了comfyui的view接口

3、图片的在线预览接口:GET /view

图片的在线预览接口(上传图像,生图图像,蒙蔽图像,均通过该接口预览)

请求参数
名称位置类型必选说明
filenamequerystring图片名称
typequerystring图片存放位置的文件夹(input为长传图片,output为生成的图片)
subfolderquerystring子文件夹(没有可不填)
previewquerystring预览
channelquerystring

在前面的websocket中,我们通过history获取最终的图片信息,我们将图片信息进行拼接,即可获取到图片的url访问地址,就是通过该接口获取到图片

(二)二进制数据详解:

二进制数据就是在绘图过程中,如果在采样器中有开启图片预览,则comfyui会以二进制数据的方式推送给你,如果没有开启,则没有,如下:
请添加图片描述

总结

至此,stable diffusion comfyui的api的整个调用逻辑已经走完,无论是文生图、图生图、换脸、倒推关键词等,都是走相同的流程。你们在实际开发过程中也可以参考我的项目来实现

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

关于ComfyUI相关的Stable Diffusion项目资源或教程的信息,在提及Physics-Based Human Motion Modelling for People Tracking的内容中并未直接涉及[^1]。然而,针对ComfyUIStable Diffusion结合使用的场景,可以提供一些通用指导。 ### ComfyUI简介 ComfyUI是一个用于创建图形界面应用程序的框架,允许开发者通过拖拽组件来构建用户界面。对于希望简化模型部署流程并使AI工具更易于访问的研究人员和开发人员来说,这是一个非常有价值的平台。 ### Stable Diffusion概述 Stable Diffusion是一种基于深度学习的技术,旨在生成高质量图像的同时保持计算效率。该技术利用预训练神经网络将随机噪声转换成逼真的图片,广泛应用于艺术创作、设计等领域。 ### 结合两者的方法 为了实现ComfyUIStable Diffusion的有效集成: - **安装环境配置**:确保已正确设置Python虚拟环境,并按照官方文档完成必要的依赖项安装。 - **API接口调用**:研究如何通过RESTful API或其他形式的数据交换机制连接到远程运行的Stable Diffusion服务端实例。 - **自定义节点开发**:探索编写特定于Stable Diffusion操作的新控件的可能性,比如参数调整滑块、样式迁移选项卡等。 ```python import requests def generate_image(prompt, api_key): url = "http://localhost:7860/sdapi/v1/txt2img" payload = { "prompt": prompt, "steps": 50, "cfg_scale": 7.5, "width": 512, "height": 512, "seed": -1 } headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, json=payload, headers=headers) return response.json() ``` 此代码片段展示了如何向本地托管的服务发送请求以根据给定提示词生成新图像的一个简单例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值