2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f0=0,f1=1;fi = fi−1+fi−2
(i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
Input
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
Output
输出fn
的前4个数字(若不足4个数字,就全部输出)。
Sample Input
0
1
2
3
4
5
35
36
37
38
39
40
Sample Output
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023
这里先处理前20位 小于等于四位数的可以直接输出
对于大数取以10为底对数
举例 lg1230000.9876 = lg1.2300009876*10^6 = lg1.23456789876(小数部分) +6(整数部分)
lg1.2300009876 < 1 也就是 lg1230000.9876 的小数部分
那怎么获得 lg1.2300009876 想必大家已经知道了 lg1230000.9876 - int(lg1230000.9876) 再用pow(10,(lg1230000.9876-int(lg1230000.9876))就得到了 1.2300009876 再*1000 就得到了前四位
公式中(1-sqrt(5))/2 的n次方 很接近0 对答案无影响可以省略
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int main()
{
int f[23];
f[0] = 0,f[1] = 1;
for(int i = 2; i < 23 ; i++)
f[i] = f[i-1]+f[i-2];
int n;
while(~scanf("%d",&n)) {
if(n <= 20)
printf("%d\n",f[n]);
else {
double l = log10(1.0/sqrt(5))+n*log10((1+sqrt(5.0))/2.0);
printf("%d\n",int (pow(10, l-int(l))*1000));
}
}
}