数字
- x x x: 标量
- x \mathbf{x} x: 向量
- X \mathbf{X} X: 矩阵
- X \mathcal{X} X: 张量
- I \mathbf{I} I: 单位矩阵
- x i , [ x ] i x_i, [\mathbf{x}]_i xi,[x]i: 向量 x \mathbf{x} x 第 i i i 个元素
- x i j , [ X ] i j x_{ij}, [\mathbf{X}]_{ij} xij,[X]ij: 矩阵 X \mathbf{X} X 第 i i i 行第 j j j 列的元素
集合论
- X \mathcal{X} X: 集合
- Z \mathbb{Z} Z: 整数集合
- R \mathbb{R} R: 实数集合
- R n \mathbb{R}^n Rn: n n n维实数向量集合
- R a × b \mathbb{R}^{a \times b} Ra×b: 包含 a a a行和 b b b列的实数矩阵集合
- A ∪ B \mathcal{A} \cup \mathcal{B} A∪B: 集合 A \mathcal{A} A和 B \mathcal{B} B的并集
- A ∩ B \mathcal{A} \cap \mathcal{B} A∩B: 集合 A \mathcal{A} A与集合 B \mathcal{B} B的交集
- A ∖ B \mathcal{A} \setminus \mathcal{B} A∖B: 集合 A \mathcal{A} A与集合 B \mathcal{B} B相减, B \mathcal{B} B关于 A \mathcal{A} A的相对补集
函数和运算符
- f ( ⋅ ) f(\cdot) f(⋅): 函数
- log ( ⋅ ) \log(\cdot) log(⋅): 自然对数
- exp ( ⋅ ) \exp(\cdot) exp(⋅): 指数函数
- 1 X \mathbf{1}_{\mathcal{X}} 1X: 指示函数
- ( ⋅ ) ⊤ (\cdot)^\top (⋅)⊤: 向量或矩阵的转置
- X − 1 \mathbf{X}^{-1} X−1: 矩阵的逆
- ⊙ \odot ⊙: 按元素相乘
- [ ⋅ , ⋅ ] [\cdot, \cdot] [⋅,⋅]: 连结
- ∣ X ∣ |\mathcal{X}| ∣X∣: 集合的基数
- ∥ ⋅ ∥ p \|\cdot\|_p ∥⋅∥p: L p L_p Lp 正则
- ∥ ⋅ ∥ 2 \|\cdot\|_2 ∥⋅∥2: L 2 L_2 L2 正则
- ⟨ x , y ⟩ \langle \mathbf{x}, \mathbf{y} \rangle ⟨x,y⟩: 向量 x \mathbf{x} x和 y \mathbf{y} y的点积
- ∑ \sum ∑: 连加
- ∏ \prod ∏: 连乘
- = def \overset{\text{def}}{=} =def: 定义
微积分
- d y d x \frac{dy}{dx} dxdy: y y y关于 x x x的导数
- ∂ y ∂ x \frac{\partial y}{\partial x} ∂x∂y: y y y关于 x x x的偏导数
- ∇ x y \nabla_{\mathbf{x}} y ∇xy: y y y关于 x \mathbf{x} x的梯度
- ∫ a b f ( x ) d x \int_a^b f(x) \, dx ∫abf(x)dx: f f f在 a a a到 b b b区间上关于 x x x的定积分
- ∫ f ( x ) d x \int f(x) \, dx ∫f(x)dx: f f f关于 x x x的不定积分
概率与信息论
- P ( ⋅ ) P(\cdot) P(⋅): 概率分布
- z ∼ P z \sim P z∼P: 随机变量 z z z具有概率分布 P P P
- P ( X ∣ Y ) P(X \mid Y) P(X∣Y): X ∣ Y X \mid Y X∣Y的条件概率
- p ( x ) p(x) p(x): 概率密度函数
- E x [ f ( x ) ] \mathbb{E}_x[f(x)] Ex[f(x)]: 函数 f f f对 x x x的数学期望
- X ⊥ Y X \perp Y X⊥Y: 随机变量 X X X和 Y Y Y是独立的
- X ⊥ Y ∣ Z X \perp Y \mid Z X⊥Y∣Z: 随机变量 X X X和 Y Y Y在给定随机变量 Z Z Z的条件下是独立的
- Var ( X ) \text{Var}(X) Var(X): 随机变量 X X X的方差
- σ X \sigma_X σX: 随机变量 X X X的标准差
- Cov ( X , Y ) \text{Cov}(X, Y) Cov(X,Y): 随机变量 X X X和 Y Y Y的协方差
- ρ ( X , Y ) \rho(X, Y) ρ(X,Y): 随机变量 X X X和 Y Y Y的相关性
- H ( X ) H(X) H(X): 随机变量 X X X的熵
- D KL ( P ∥ Q ) D_{\text{KL}}(P \parallel Q) DKL(P∥Q): P P P和 Q Q Q的KL-散度
复杂度
- O \mathcal{O} O: 大O标记