『深度学习笔记』深度学习笔记 — 特征工程


一、特征选择

特征选择主要有三种方式:

1.1 Filter 方法

主要思想: 对每一维特征进行“打分”,即给每一维的特征赋予权重,这样的权重即代表了该维特征的重要性,然后根据权重排序。

主要方法:

  1. Chi-squared test 卡方检验
  2. information gain 信息增益
  3. correlation coeficient scores 相关系数

1.2 Wrapper 方法

主要思想: 将子集的选择看作是搜索寻优问题,生成不同的组合,对组合进行评价,再与其他组合进行比较。这样将子集的选择看作是一个优化问题,通过优化算法即可解决。

主要方法:

  1. Recursive Feature Elimiantion Algorithm 递归特征消除算法

1.3 Embedded 方法

主要思想: 在模型既定的情况下学习出对提高模型准确性最好的属性,即在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。

主要方法:

  • 正则化岭回归 就是在基本线性回归的过程中加入了正则项
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

libo-coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值