DINO-DETR

在这里插入图片描述
在这里插入图片描述

DETR收敛慢的问题

  • PnP-DETR(ICCV 2021) 改进了 DETR 计算量大的问题,利用提出的 poll and pool(PnP)采样模块在图像特征上自适应的采样不同粒度的特征,从而实现计算量和性能的折衷。

  • Deformable DETR(ICLR 2021) 通过改变 transformer 中注意力机制的计算方式来减小计算量,其借助可变性卷积的思想,为每个 token 采样固定数量的其他 token 完成注意力的计算。同时,Deformable DETR 引入了多尺度训练来提高小目标检测的性能。至此,对 DETR 存在的两个弊端都进行了探索并使其得到一定程度的缓解。

  • Sparse DETR(ICLR 2022) 在多尺度 Deformable DETR 的基础上进一步降低 encoder 中注意力机制的计算成本,在检测性能不会显著下降的基础上只更新 encoder tokens 的一部分,从而实现选择性地更新 decoder 预期引用的 token。

  • Conditional DETR(ICCV 2021) 认为 DETR 收敛缓慢的原因在于其高度依赖高质量的 content embedding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

libo-coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值