数学笔记

无界但非无穷大:x_n=n^(-1)^n;在无穷大和无穷小之间跳跃的函数;即:两个无界乘积可为无穷小;
无穷小与无穷大:只有定一个才能确定,其他为未定型;
定积分也叫和数极限,当分割的份数为1,即没有分割为积分下限,当分割为无穷份时为积分上限。
每份的高分别为f(⊿x),f(2⊿x),f(3⊿x)
积分与和式的转换:[1,n]的区间可以化成n-1份每份是[k,k+1]即:∫(1,n)f(x)dx=∑(k=1,n-1)∫(k,k+1)f(x)dx;
高阶无穷小转化为极限。
诺必达法则解决的问题都可以转为泰勒公式解决。
对于变限函数先是积分在微分,化成f(x)dx微分,求导就变成函数,所以处理变限积分的常用方法为求导变函数。

分部积分:对谁先积分,d谁?组成形式:AB型,有时A为1.



**********************************************************************************************************************************


矩阵与行列式乘法的区别是由加法的区别引起的,行列式是方程,乘法是某个式子的放缩,矩阵是由意义的方阵,对应的每个元素做加法。


方阵才有逆:只有n到n的一一映射才有逆映射(知道一个y求一个x。


我们如果把矩阵看成一个"算子"的话,矩阵的乘法就能看成一个状态机的推演,推算的过程就是一次算子入栈,反推的过程就是算子出栈


线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。
矩阵乘法即为对象的运动,向量代表对象,矩阵代表乘法。矩阵的本质是运动的描述,"运动”的概念不是微积分中的连续性的运动,而是瞬间发生的变化。
所谓非奇异,只对方阵有意义,最常用、最有用的一种变换,就是在同一个线性空间之内的线性变换。也就是说,下面所说的矩阵,不作说明的话,就是方阵,而且是非奇异方阵。


我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:
若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:
A = P-1BP  这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵


所以矩阵又是运动,又是坐标系,那是因为——“运动等价于坐标系变换”


 Ma = b的意思是:
      “向量a经过矩阵M所描述的变换,变成了向量b。”而从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:
      Ma = b的意思是:
      “有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I(单位阵的度量下,这个向量的度量结果是b。




而 Ma = Ib的意思就是说:
     “在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!”这哪里是什么乘法计算,根本就是身份识别嘛。从这个意义上我们重新理解一下向量。向量这个东西客观存在,但是要把它表示出来,就要把它放在一个坐标系中去度量它,然后把度量的结果(向量在各个坐标轴上的投影值)按一定顺序列在一起,就成了我们平时所见的向量表示形式。


我们平时说一个向量是[2 3 5 7]T,隐含着是说,这个向量在 I 坐标系中的度量结果是[2 3 5 7]T,因此,这个形式反而是一种简化了的特殊情况。




我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了


矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积。




所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以所谓的特征向量不是一个向量而是一个向量族,另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值不是那么重要,虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东、西
!求逆阵:伴随阵比逆阵相大模倍。


A^n=pK^np(-1)


a的幂可以转换为相似阵的幂
a的多项式可以转换为相似阵(美丽简洁的描述)的多项式
对角阵:每个元素可以看做一个子阵,即对整个矩阵的操作转换为对每个元素的操作。


 矩阵乘法可以转换为线性变换。即本质都是运动。




秩主要是用来描述行(列)向量组所含向量的“真正”个数,知道了秩是多少,也就知道了最少用多少个向量就能表示这个向量组。




解方程:1,线性变换或矩阵乘法。
2,行列式法d.
常把向量等式转换为矩阵乘积形式。


向量组:即将矩阵拆分。向量组的秩,即可以用几个向量表示这个向量组的任意一个向量。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值