漫谈高数(九) 线性代数的本质

数学的本质----线性代数的本质 [引用或转载请表明本文的CU blog出处]
        线性代数(Linear Algebra),能否用一句话概括那些"线性方程组","线性相关","特征值和特征向量","对角化和相似","二次型和乔丹化",都是干了什么样的一件事情?
        可以!这句话就是"线性变换"!----线性代数一切知识的本质,或者叫做"坐标系的变换和投影"。
 
        考虑这样一个例子,在(x,y)坐标系当中有一个点(a,b),问在什么坐标系里面这个点对应(b,a)? 显然,把x轴和y轴对调一下,写成矩阵-向量乘法的形式就是:
[0,1][a]
[1,0][b]=[b,a]
        看清楚了吗,(x,y)到(x',y')的映射就是x'=(0x+1y),y'=(1x+0y)这样的一个线性变换,矩阵的乘法实现了坐标系的对调。同理,看下面几个矩阵:
[1,0]___[2,0]___[0,2]___[1,-1]___[1, 0]
[0,1]___[0,3]___[3,0]___[1, 1]___[1,-1]
        我们可以通过计算来看出,上面5个矩阵:第一个矩阵是单位矩阵E,也就是把(x,y)映射到(x',y')保持不变;第二个矩阵映射以后变量的长度(或者 叫模,1范数)有变换,向量的角度不变;第3个矩阵对调x/y轴,并且有伸缩;第4个矩阵把x/y逆时针旋转45度,模变成原来的根号2倍;第5个矩阵是 对x轴做对称,把y变成-y。2维空间上的线性变换可以用复数乘法来替代,但是更高维的变换就只能借助于矩阵乘法。
        OK,既然矩阵相当于一种坐标系的旋转和投影(x/y到x'/y'),那么我们从这个角度来看线性代数的知识体系。
(1) 线性方程组AX=B,也就是说,B是x'/y'坐标系一个向量(b1,b2,b3...bn),矩阵A是(x/y)到(x'/y')的映射,能否找到X= (x1,...xn)使得X被映射到B。如果找到了一个,那么这个映射就是唯一的,当然映射也可能没有,也可能有无数种可能的情况。
(2) 那么,什么情况AX=B的解是唯一的呢? 满足行列式|A|!=0。为了满足|A|!=0,必须有a的行向量线性无关,也就是a的每一行都是一个独立的坐标轴,没有冗余的坐标轴。所以坐标系映射的自变量和因变量也就因此一一对应,所以总是有且只有一个解。
(3) 什么情况下无解呢? A的行向量有冗余,最大线性无关(无冗余的坐标系个数),或者秩R(A)=r,但是发现需要通过r个坐标轴的映射,得到s维德映射结果(s>r)。 显然无解(找不到低维到高维的一一映射)。同理,如果s<r,那么有无数个解(通解,一对多的映射),s=r正好也是一个解。
        矩阵的对角化,揭示了矩阵作为一种线性变换的手段的本质。矩阵的意义就是线性变换,线性变换符合加法律,所以矩阵有加法的结合率和交换律。
        那么特征值和特征向量的意义,也就很明显了。假设N维坐标系(i1,i2...in)映射到新的坐标系(j1,j2,j3...jn),既然矩阵A代表一 种映射关系,那么这种映射关系可以分解为模的伸缩和角度旋转。A=P^(-1)*B*P,B是特征值构成的矩阵,那么每一个特征值,相当于坐标ix映射到 jx的那一维的坐标,其模的伸缩比例是多少。可逆矩阵P的每一个列向量代表的就是新的坐标系相当于原有的坐标系如何投影过来----Pi的每一个分量就是 (i1...in)在ji上面投影的大小。矩阵对角阵的分解式A=P^(-1)*B*P代表了这样一种信息: 把原坐标系(i1,i2...in)进行旋转(P矩阵),并且幅度进行伸缩(B矩阵),再做一次镜像的反转(P^(-1),因为旋转本身不具有反转的功 能,那么就是原矩阵A的线性变换功能的全部了。
        矩阵,就是旋转+镜像翻转+尺度伸缩。这就是一切线性代数和矩阵理论要研究的问题,无出其外。
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值