大数据之Sqoop

大数据之Sqoop

一、Sqoop 简介

  Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres 等)中的数据导进到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。   Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache项目。   Sqoop2 的最新版本是 1997。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。

二、Sqoop 原理

  将导入或导出命令翻译成 mapreduce 程序来实现。   在翻译出的 mapreduce 中主要是对 inputformat 和 outputformat 进行定制。

三、Sqoop 安装

  安装步骤详见以下链接

  https://www.cnblogs.com/botaoli/p/15516924.html

四、Sqoop 的简单使用案例

  简单使用详见以下链接

  https://www.cnblogs.com/botaoli/p/12753346.html

4.1 导入数据

  在 Sqoop 中,"导入" 概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用 import 关键字。

4.1.1 RDBMS 到 HDFS

1) 确定 Mysql 服务开启正常2) 在 Mysql 中新建一张表并插入一些数据

$ mysql -uroot -p000000
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');

3) 导入数据

(1)全部导入
$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"
(2)查询导入
$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id <=1 and $CONDITIONS;'

提示:must contain '$CONDITIONS' in WHERE clause。如果 query 后使用的是双引号,则$CONDITIONS 前必须加转移符,防止 shell 识别为自己的变量。

(3)导入指定列

$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,sex \
--table staff
提示:columns 中如果涉及到多列,用逗号分隔,分隔时不要添加空格
(4)使用 sqoop 关键字筛选查询导入数据
$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table staff \
--where "id=1"

4.1.2 RDBMS 到 Hive

$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table staff_hive

提示:该过程分为两步,第一步将数据导入到 HDFS,第二步将导入到 HDFS 的数据迁移到Hive 仓库,第一步默认的临时目录是/user/atguigu/表名

 4.1.3 RDBMS 到 Hbase

$ bin/sqoop import \
--connect jdbc:mysql://hadoop1:3306/company \
--username root \
--password 000000 \
--table company \
--columns "id,name,sex" \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_company" \
--num-mappers 1 \
--split-by id

提示:sqoop1.4.6 只支持 HBase1.0.1 之前的版本的自动创建 HBase 表的功能解决方案:手动创建 HBase 表

hbase> create 'hbase_company,'info'
hbase> scan 'hbase_company,'info'

 4.2 导出数据

  在 Sqoop 中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用 export 关键字。

 4.2.1 HIVE/HDFS 到 RDBMS

$ bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"

提示:Mysql 中如果表不存在,不会自动创建

4.3 脚本打包

  使用 opt 格式的文件打包 sqoop 命令,然后执行

1) 创建一个.opt 文件

$ mkdir opt
$ touch opt/job_HDFS2RDBMS.opt

2) 编写 sqoop 脚本

$ vi opt/job_HDFS2RDBMS.opt
export
--connect
jdbc:mysql://hadoop1:3306/company
--username
root
--password
000000
--table
staff
--num-mappers
1
--export-dir
/user/hive/warehouse/staff_hive
--input-fields-terminated-by
"\t"

3) 执行该脚本

$ bin/sqoop --options-file opt/job_HDFS2RDBMS.opt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值