逻辑回归与k-means

目录

一。模型的保存与加载

二。逻辑回归的定义

三。逻辑回归的损失函数

四。逻辑回归-良/恶性乳腺癌肿分类

五。LogisticRegression总结

六。k-means(非监督学习)步骤

七。k-means聚类分析案例

八。k-means性能评估指标

九。k-means总结


一。模型的保存与加载

from sklearn.datasets import load_boston#导入数据
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge#正规方程,梯度下降,岭回归
from sklearn.model_selection import train_test_split#数据分隔
from sklearn.preprocessing import StandardScaler#对数据标准化
from sklearn.metrics import mean_squared_error#均方误差
import joblib#模型的保存与加载
def mylinear():
    lb=load_boston()
    x_train,x_test,y_train,y_test=train_test_split(lb.data,lb.target,test_size=0.25)
    print(y_train,y_test)

    #实例化两个标准化api
    std_x=StandardScaler()
    x_train=std_x.fit_transform(x_train)
    x_test=std_x.transform(x_test)

    std_y=StandardScaler()
    y_train=std_y.fit_transform(y_train.reshape(-1, 1))
    y_test=std_y.transform(y_test.reshape(-1, 1))

    # lr=LinearRegression()#正规方程求解方式预测结果(容易出现过拟合,为了把训练集数据表现更好,可以通过正则化解决-岭回归)
    # lr.fit(x_train,y_train)
    # print(lr.coef_)#coef_为回归系数
    # joblib.dump(lr,"./temp/test.pkl")#保存训练好的模型
    # y_lr_predict=std_y.inverse_transform(lr.predict(x_test))#inverse_transform将标准化后的数据转化为标准化前的数据
    # print("正规方程测试集里面每个房子的预测价格:",y_lr_predict)
    # print("正规方程的均方误差:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict))#inverse_transform将标准化后的数据转化为标准化前的数据

    model=joblib.load("./temp/test.pkl")
    y_predict=std_y.inverse_transform(model.predict(x_test))
    print("保存的模型里面每个房子的预测价格:", y_predict)


    sgd=SGDRegressor()#梯度下降去进行房价预测
    sgd.fit(x_train,y_train)
    print(sgd.coef_)
    y_sgd_predict=std_y.inverse_transform(sgd.predict(x_test))
    print("梯度下降测试集里面每个房子的预测价格:",y_sgd_predict)
    print("梯度下降的均方误差:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict))#第一个参数为真实值,第二个为预测值

    rd=Ridge(alpha=1)#岭回归去进行房价预测
    rd.fit(x_train,y_train)
    print(rd.coef_)
    y_rd_predict=std_y.inverse_transform(rd.predict(x_test))#inverse_transform将标准化后的数据转化为标准化前的数据
    print("岭回归测试集里面每个房子的预测价格:",y_rd_predict)
    print("岭回归的均方误差:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict))



    return None
if __name__=="__main__":
    mylinear()

二。逻辑回归的定义

逻辑回归是解决二分类问题的利器

输入:h(w)= w_0+〖w_1 x〗_1+w_2 x_2+…  = w^T x(单个样本)

三。逻辑回归的损失函数

与线性回归原理相同,但由于是分类问题,损失函数不一样,只能通过梯度下降求解

对数似然损失函数:

 完整的损失函数:

cost损失的值越小,那么预测的类别准确度更高 

四。逻辑回归-良/恶性乳腺癌肿分类

•sklearn.linear_model.LogisticRegression(penalty=‘l2’, C = 1.0)

        •Logistic回归分类器

        •coef_:回归系数

import numpy as np
from sklearn.linear_model import LogisticRegression#逻辑回归
import pandas as pd
from sklearn.model_selection import train_test_split#数据划分
from sklearn.preprocessing import StandardScaler#标准化
from sklearn.metrics import classification_report#精确率与召回率

def logistic():
    """逻辑回归做二分类进行癌症预测"""
    column = ['Sample code number','Clump Thickness', 'Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']
    data=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=column)
    print(data.shape)
    data=data.replace(to_replace="?",value=np.nan)
    data=data.dropna()
    print(data.shape)
    x_train,x_test,y_train,y_test=train_test_split(data[column[1:10]],data[column[10]],test_size=0.25)

    std=StandardScaler()
    x_train=std.fit_transform(x_train)
    x_test=std.transform(x_test)

    lg=LogisticRegression(C=1)
    lg.fit(x_train,y_train)
    y_predict=lg.predict(x_test)
    print(lg.coef_)
    print("准确率:",lg.score(x_test,y_test))
    print("召回率",classification_report(y_test,y_predict,labels=[2,4],target_names=["良性","恶性"]))

    # print(data.info())


    return None
if __name__=="__main__":
    logistic()

/Users/lichengxiang/opt/anaconda3/bin/python /Users/lichengxiang/Desktop/python/机器学习/逻辑回归-良/恶性乳腺癌肿分类.py 
(699, 11)
(683, 11)
[[1.4719325  0.51849477 0.70291461 0.73031174 0.01414083 1.17332148
  0.8612629  0.75304823 0.78383278]]
准确率: 0.9590643274853801
召回率               precision    recall  f1-score   support

          良性       0.96      0.98      0.97       115
          恶性       0.96      0.91      0.94        56

    accuracy                           0.96       171
   macro avg       0.96      0.95      0.95       171
weighted avg       0.96      0.96      0.96       171


进程已结束,退出代码0

五。LogisticRegression总结

应用:广告点击率预测、电商购物搭配推荐

优点:适合需要得到一个分类概率的场景

缺点:当特征空间很大时,逻辑回归的性能不是很好(看硬件能力)

六。k-means(非监督学习)步骤

1、随机设置K个特征空间内的点作为初始的聚类中心

2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类

中心点作为标记类别

3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平

均值)

4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行

第二步过程

七。k-means聚类分析案例

•sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)

        •k-means聚类

        •n_clusters:开始的聚类中心数量

        •init:初始化方法,默认为'k-means ++’

        •labels_:默认标记的类型,可以和真实值比较(不是值比较)

import pandas as pd
from sklearn.decomposition import PCA#pca主成分分析,特征降维
from sklearn.cluster import KMeans#聚类分析
from matplotlib import pyplot as plt
from sklearn.metrics import silhouette_score#k-means轮廓系数

prior=pd.read_csv("./order_products__prior.csv")
products=pd.read_csv("./products.csv")
orders=pd.read_csv("./orders.csv")
aisles=pd.read_csv("./aisles.csv")

_mg=pd.merge(prior,products,on=["product_id","product_id"])
_mg=pd.merge(_mg,orders,on=["order_id","order_id"])
mt=pd.merge(_mg,aisles,on=["aisle_id","aisle_id"])

# print(mt.head())
# print(mt.info())
# print(len(mt["user_id"].tolist()))
# print(len(set(mt["user_id"].tolist())))

cross=pd.crosstab(mt["user_id"],mt["aisle"])# 交叉表(特殊的分组工具),选出两个属性分别作为index和column
# print(cross)
# print(type(cross))
pca=PCA(n_components=0.9)#进行主成分分析,降维,列数减少,行数不变
data=pca.fit_transform(cross)
# print(data)

x=data[:500]
print(x.shape)
# print(x)

km=KMeans(n_clusters=4)#聚类分析
km.fit(x)#输入x数据,注意x全是特征值,并没有目标值
predict=km.predict(x)#输出预测值,预测值为0-3,一共4个种类,种类数通过n_clusters设置

plt.figure(figsize=(10,10))
colored=["orange","green","blue","purple"]
colr=[colored[i] for i in predict]
plt.scatter(x[:,1],x[:,20],color=colr)
plt.xlabel("1")
plt.ylabel("20")
plt.savefig("./聚类分析.jpg")
plt.show()

print(silhouette_score(x,predict))#评判聚类效果轮廓系数,输入x数据集和predict预测的类号


八。k-means性能评估指标

注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的平均距离,a_i  为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值

如果轮廓系数小于0,说明a_i 的平均距离大于最近的其他簇。聚类效果不好

如果轮廓系数越大,说明a_i 的平均距离小于最近的其他簇。聚类效果好

轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优

•sklearn.metrics.silhouette_score(X, labels)

        •计算所有样本的平均轮廓系数

        •X:特征值

        •labels:被聚类标记的目标值

九。k-means总结

特点分析:

        采用迭代式算法,直观易懂并且非常实用

缺点:

        容易收敛到局部最优解(多次聚类)

        需要预先设定簇的数量(k-means++解决)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PURE-li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值