RNN,LSTM和GPU


一、RNN网络(Recurrent Neural Network)

1.1RNN网络模型定义

RNN是一种特殊的神经网络结构,是一类用于处理序列数据的神经网络。与CNN最大的区别在于,它可以处理不同时间点上的数据,各个层之间有一定的联系,不是孤立的卷积网络层。
循环神经网络如下图所示。在一个时间步骤中的每个节点都接收来自上一个节点的输入,并且这可以用一个feedback循环来表示。我们可以深入这个feedback循环并以下图来表示。在每个时间步骤中,我们取一个输入xt_i和前一个节点的输出h_t-i,对其进行计算,并生成一个输出ht_i+1。这个输出被取出来之后再提供给下一个节点。此过程将一直继续,直到所有时间步骤都被评估完成。
在这里插入图片描述
在这里插入图片描述
工作原理如下:首先单词被转换成机器可读的向量,然后RNN逐个处理向量序列,依次处理到最后一个。
在这里插入图片描述
在处理过程中,讲前一个处理好的输出根据权重,传递到下一个网络模块,然后和下一个模块的输入一起进入网络,依次重复此过程完成网络传输。
在这里插入图片描述
在向前传播过程中每个单元工作依次按照如下方式进行:
在这里插入图片描述
动画演示如下:
在这里插入图片描述
首先,将输入和先前隐藏状态组合成一个向量,向量中含有当前输入和先前输入的信息。这个向量再经过激活函数Tanh后,输出新的隐藏状态,或网络记忆。
激活函数Tanh用输出值始终在区间(-1, 1)内。
在这里插入图片描述
在这里插入图片描述
一个简单的神经网络一般包含输入层、隐藏层和输出层,工作原理如下:
在这里插入图片描述
U是输入层到隐藏层的权重矩阵,o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。
整个模型框架计算公式如下:

在这里插入图片描述

1.2 RNN模型的缺点

在这里插入图片描述
由上图可知,在ht的输出中,包含了x0…xt,h0…ht-1所有的信息,而最远端的x0,h0经过了t次与权值相乘。而RNN的激活函数tanh及其导数的波形如下:
在这里插入图片描述
可以看出,tanh输出的数值是<=1的。如果权值W小于1,在重复多次相乘后,最终权值趋近于0;如果权值W大于1,则重复多次相乘后趋近于无穷大,而无穷大的梯度放在tanh中只会无限趋近于1。这种趋近于0或1的现象被称为梯度消失(梯度弥散)与梯度爆炸。因此,对于长链的时间序列,远端的数值点对于现在的输出起不到任何作用,这个现象称为长期依赖。

二、LSTM网络(Long Short Term Memory)

2.1 LSTM原理

RNN受限于短期记忆问题。如果一个序列足够长,那它们很难把信息从较早的时间步传输到后面的时间步。因此,如果你尝试处理一段文本来进行预测,RNN可能在开始时就会遗漏重要信息。在反向传播过程中,RNN中存在梯度消失问题。在这种情况需要一种长记忆网络,RNN改进型网络LSTM和GRU就诞生。
在这里插入图片描述
LSTM和GRU网路引入“门”概念,通过门对相关信息进行选取,判定哪些是重要形象,需要保留,哪些需要丢弃。LSTM和GRU经常用在语音识别、语音合成和文本生成等领域,还可用来为视频生成字幕。
举个例子:今天下午天气很好,我们去打羽毛球。听到或看到这句话后,我们会第一时间捕捉主要信息“下午”,“天气好”,“打篮球”,会舍弃不重要的信息“我们”,“去”等。LSTM和GRU工作原理类似。它可以学习只保留相关信息来进行预测,并忘记不相关的数据。
LSTM核心是单元模块和“门”电路结构。单元模块用于将信息逐一向后续传播,在传播过程中携带相关信息,从而保证信息的有效性和持续性。门电路用于对现象进行甄别和筛选,丢掉无用信息,保留有效信息。在此处采用电路中的建模方式,0表示舍弃,1表示保留信息,因此在此处采用sigmod函数,该函数的取值(0,1).这有助于更新或忘记数据,因为任何数字乘以0都为0,这部分信息会被遗忘。同样,任何数字乘以1都为相同值,这部分信息会完全保留。通过这样,网络能了解哪些数据不重要需要遗忘,哪些数字很重要需要保留。
在这里插入图片描述
LSTM拥有三个门:输入门、遗忘门、输出门。

输入门和输出门,顾名思义就是输入和输出。遗忘门用于对信息进行取舍和保留。
在这里插入图片描述
输入门:
输入门用来更新单元状态。先将先前隐藏状态的信息和当前输入的信息输入到Sigmoid函数,在0和1之间调整输出值来决定更新哪些信息,0表示不重要,1表示重要。你也可将隐藏状态和当前输入传输给Tanh函数,并在-1和1之间压缩数值以调节网络,然后把Tanh输出和Sigmoid输出相乘,Sigmoid输出将决定在Tanh输出中哪些信息是重要的且需要进行保留。
在这里插入图片描述
输出门:
输出门能决定下个隐藏状态的值,隐藏状态中包含了先前输入的相关信息。当然,隐藏状态也可用于预测。首先把先前的隐藏状态和当前输入传递给Sigmoid函数;接着把新得到的单元状态传递给Tanh函数;然后把Tanh输出和Sigmoid输出相乘,以确定隐藏状态应携带的信息;最后把隐藏状态作为当前单元输出,把新的单元状态和新的隐藏状态传输给下个时间步。
在这里插入图片描述
单元模块:
这里已经具备足够信息来计算单元状态。首先把先前的单元状态和遗忘向量逐点相乘,如果它乘以接近0的值,则意味在新的单元状态中可能要丢弃这些值;然后把它和输入门的输出值逐点相加,把神经网络发现的新信息更新到单元状态中,这样就得到了新的单元状态。
在这里插入图片描述LSTM核心为两条主线一个门:一条记忆线,一条输出线,一个门。
在这里插入图片描述
在这里插入图片描述
σ为决定门(sigmoid)。根据C的情况,决定A中保留多少,对A进行筛选后输出为B。

2.2 LSTM缺点

一个神经元中存在3个门,相当于每个神经元都是原来RNN计算量的3倍以上,十分浪费算力。
无法对不等长序列数据进行处理。

三、GRU网络

GRU结构中去除了单元状态,而使用隐藏状态来传输信息。它只有两个门结构,分别是更新门和重置门。
在这里插入图片描述
重置门(reset gate):决定丢弃先前信息的程度.
更新门(update gate):类似于LSTM中的遗忘门和输入门,它能决定要丢弃哪些信息和要添加哪些新信息。

四、 LSTM vs GRU差异

LSTM和GRU并没有明显的准确率上的区别
GRU比起LSTM来,参数更少,运算更快,仅此而已。
所以,在实际应用中,我们用LSTM做default方法,如果追求更高的性能,就换成GRU

五、总结

RNN适用于处理序列数据和预测任务,但会受到短期记忆的影响。LSTM和GRU是两种通过引入门结构来减弱短期记忆影响的演化变体,其中门结构可用来调节流经序列链的信息流。目前,LSTM和GRU经常被用于语音识别、语音合成和自然语言理解等多个深度学习应用中。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是一个基于PyTorch框架的RNN-LSTM模型的代码示例,用于实现MNIST手写数字分类: ```python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from torch.utils.data import DataLoader # 准备数据集 train_dataset = MNIST(root='./data', train=True, transform=ToTensor(), download=True) test_dataset = MNIST(root='./data', train=False, transform=ToTensor()) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False) # 构建模型 class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(RNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).cuda() c0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).cuda() out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out model = RNN(28, 128, 2, 10).cuda() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = Variable(images.view(-1, 28, 28)).cuda() labels = Variable(labels).cuda() optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_dataset)//128, loss.data[0])) # 评估模型 correct = 0 total = 0 for images, labels in test_loader: images = Variable(images.view(-1, 28, 28)).cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted.cpu() == labels).sum() print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total)) ``` 该模型包含一个LSTM层和一个全连接层,其中LSTM层的输入形状为(28,28),表示每个手写数字图像的像素为28x28。在模型训练时,使用交叉熵作为损失函数,Adam作为优化器。在训练过程中,使用128个样本的批量训练,共进行10个epoch的训练。最后输出测试集上的准确率。需要注意的是,该代码示例使用了GPU进行训练,如果没有GPU可以将`.cuda()`去掉。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值