自适应RAG---旨在查询速度、性能表现和效率之间实现最佳平衡

研究论文介绍了一种新型的自适应QA框架Adaptive-RAG,它通过动态调整检索增强的LLMs策略,根据查询复杂度优化问答系统的准确性和效率。该方法通过一个小型LM分类器预测查询难度,实现从非检索到多步检索的无缝切换,提升了处理复杂查询的能力。
摘要由CSDN通过智能技术生成

原文地址:https://cobusgreyling.medium.com/adaptive-rag-af61b5a48231

2024 年 4 月 30 日

这篇论文是关于自适应检索增强大型语言模型(Adaptive-RAG)的研究论文,主要探讨了如何通过问题复杂度来动态调整检索增强的大型语言模型(LLMs)的策略,以提高问答系统(QA)的准确性和效率。以下是对文档内容的详细总结:

摘要

  • 检索增强的LLMs通过结合外部知识库中的非参数知识,已成为提高多个任务中回答准确性的有前途的方法。
  • 现有方法在处理不同复杂度的查询时存在不足,要么对简单查询造成不必要的计算开销,要么无法充分解决复杂的多步查询。
  • 本文提出了一个新颖的自适应QA框架,能够根据查询复杂度动态选择从简单到复杂的最合适策略。
  • 该选择过程通过一个分类器来实现,该分类器是一个较小的LM,用于预测传入查询的复杂度级别。
  • 该方法提供了一种平衡策略,根据查询复杂度,无缝地在迭代和单步检索增强LLMs以及无检索方法之间进行适应。
  • 通过在开放域QA数据集上的验证,与相关基线相比,本文的方法提高了QA系统的整体效率和准确性。

引言

  • 近期的LLMs在多个任务上表现出色,但在回答需要精确事实的问题时仍存在错误。
  • 检索增强的LLMs通过访问知识库并结合检索到的信息来提高准确性和时效性。
  • 早期的研究主要集中在单跳查询上,但有些查询需要多步推理和信息聚合。
  • 为了有效处理复杂查询,研究集中在多步和多推理QA上,但这会带来较大的计算开销。
  • 本文提出了一个自适应QA系统,能够根据查询复杂度动态调整检索增强LLMs的操作策略。

相关工作

  • 开放域QA任务涉及检索和阅读理解两个模块。
  • 多跳QA是开放域QA的扩展,需要从多个文档中综合信息以回答更复杂的查询。
  • 自适应检索策略旨在根据查询的复杂度动态决定是否检索文档。

方法

  • 本文提出了自适应检索增强生成(Adaptive-RAG)框架,根据查询复杂度选择最合适的策略。
  • 介绍了三种不同的检索增强LLM策略:非检索、单步检索和多步检索。
  • 通过一个分类器来评估查询复杂度,并自动收集训练数据集。
  • 分类器是一个较小的LM,训练用于预测查询的复杂度级别。

实验设置

  • 使用单跳和多跳QA数据集进行实验。
  • 比较了包括自适应检索增强策略在内的多种模型。
  • 使用F1、EM、准确率和步骤时间等指标进行评估。

实验结果与分析

  • 主要结果表明,自适应策略在有效性和效率上都优于简单和复杂的策略。
  • 分类器性能分析显示,自适应RAG在分类查询复杂度上比其他基线更准确。
  • 对分类器的训练数据进行了分析,发现结合模型预测结果和数据集固有偏差的策略更有效。
  • 分析了分类器的大小对其性能的影响,发现不同大小的分类器性能没有显著差异。
  • 通过案例研究,展示了自适应RAG与自适应检索在处理简单和复杂问题时的差异。

结论

  • 提出了自适应检索增强生成框架(Adaptive-RAG),能够根据查询复杂度动态调整策略。
  • 在开放域QA数据集上的验证表明,自适应RAG提高了QA系统的整体准确性和效率。
  • 尽管自适应RAG在有效性和效率方面表现出色,但仍有改进分类器的潜在空间。

限制

  • 自适应RAG在确定查询复杂度和选择适当策略方面具有优势,但仍有改进分类器的训练数据集和架构的空间。

伦理声明

  • 需要意识到用户输入可能具有攻击性或有害性,并开发方法来检测和管理检索增强框架中的不当内容。

分类器(Classifier)

目的和功能

  • 分类器的主要目的是评估传入查询的复杂度,并根据复杂度将其分类为不同的级别。
  • 分类结果将指导框架选择最合适的检索增强策略来处理特定的查询。

设计和实现

  • 分类器是一个较小的语言模型(LM),它被训练来预测查询的复杂度级别。
  • 复杂度级别通常分为三种:简单(A)、中等(B)和复杂(C),分别对应不同的处理策略。
    • 简单(A):查询可以直接由LLM生成答案,无需外部检索。
    • 中等(B):查询需要至少一次检索来获取相关信息。
    • 复杂(C):查询需要多次检索和迭代处理来综合信息并生成答案。

训练数据的自动收集

  • 由于没有现成的查询复杂度标注数据集,分类器的训练数据是通过自动标注生成的。
  • 利用不同检索增强LLM策略的预测结果来确定查询的复杂度标签。
  • 通过数据集中的固有偏差(例如,单跳或多跳QA场景)进一步细化分类标签。

平衡策略(Balancing Strategy)

策略选择

  • 根据分类器的输出,Adaptive-RAG框架动态选择从简单到复杂的处理策略。
  • 这种选择是无缝的,不需要改变LLM的内部架构或参数。

策略实施

  • 对于简单查询(A),直接使用LLM生成答案。
  • 对于中等复杂度查询(B),采用单步检索方法,检索相关信息后将其与查询一起输入LLM。
  • 对于复杂查询(C),采用多步检索方法,通过多次迭代访问检索器和LLM,并结合Chain-of-Thought推理来生成答案。

效率和准确性的平衡

  • Adaptive-RAG旨在在处理不同复杂度查询时,平衡效率和准确性。
  • 对于简单查询,避免不必要的计算开销,提高效率。
  • 对于复杂查询,通过适当的多步检索和推理,提高准确性。

实验验证

  • 在开放域QA数据集上的实验结果表明,Adaptive-RAG在提高QA系统的整体效率和准确性方面优于其他方法。

通过这种自适应的方法,Adaptive-RAG能够根据查询的实际需求动态调整其处理策略,从而在保持高效率的同时,也能有效地解决各种复杂度的问题。这种灵活性和适应性是Adaptive-RAG区别于传统固定策略QA系统的关键优势。

分类器在Adaptive-RAG框架中是通过训练一个较小的语言模型(LM)来实现的,其目的是预测传入查询的复杂度级别。以下是分类器的创建和判断查询复杂度的详细过程:

分类器的创建

  1. 定义复杂度级别:首先,定义了三个不同的查询复杂度级别,分别是简单(A)、中等(B)和复杂(C)。
  2. 自动收集训练数据:由于缺乏直接标注查询复杂度的数据集,研究者提出了一种自动构建训练数据集的方法。这包括两个策略:
    1. 利用不同检索增强LLM策略的预测结果来确定查询的复杂度标签。
    2. 利用现有QA数据集的固有偏差(例如,单跳QA数据集倾向于简单查询,多跳QA数据集倾向于复杂查询)。
  3. 训练分类器:使用自动生成的训练数据集,训练一个较小的LM作为分类器。这个分类器的目标是根据输入的查询预测其对应的复杂度级别(A、B或C)。
  4. 优化和损失函数:使用交叉熵损失函数来优化分类器的性能,确保它能够准确地对查询进行分类。

判断查询复杂度

  1. 查询输入:当一个查询输入到系统时,首先将其传递给分类器。
  2. 复杂度预测:分类器根据其训练好的模型参数,对查询进行分析,并预测查询属于简单、中等还是复杂级别。
  3. 决策逻辑:
    1. 如果分类器判断查询为简单(A),则直接使用LLM生成答案,不进行外部检索。
    2. 如果判断为中等复杂度(B),则采用单步检索方法,检索相关文档并将其与查询一起输入LLM。
    3. 如果判断为复杂(C),则采用多步检索方法,通过多次迭代访问检索器和LLM,并结合Chain-of-Thought推理来生成答案。

通过这种方式,分类器为Adaptive-RAG框架提供了一个关键的决策依据,使得系统能够根据查询的实际复杂度动态调整其处理策略。这种自适应的能力使得系统在处理各种复杂度的查询时更加高效和准确。

自适应检索增强生成(Adaptive-RAG)框架的设计和实现。这部分内容主要分为以下几个方面:

3.1 预备知识(Preliminaries)

非检索QA方法

  • 定义了一个基本的大型语言模型(LLM),它接收一个令牌序列作为输入,并生成一个令牌序列作为输出。
  • 在问答(QA)任务中,输入序列是用户的查询(q),输出序列是模型生成的答案(a)。

单步检索QA方法

  • 为了解决LLM无法独立回答的问题,引入了外部知识源(如百科全书)中的信息。
  • 使用检索模型(Retriever)根据查询的相关性返回相关文档。
  • 将检索到的文档(d)与查询(q)一起作为输入,增强LLM以生成答案。

多步检索QA方法

  • 对于需要从多个文档中综合信息并进行推理的复杂查询,采用多步方法。
  • 在每一步检索中,都会根据当前的上下文(包括之前的文档和答案)检索新的文档,并将其纳入LLM的输入中。

3.2 自适应检索增强生成(Adaptive-RAG)

适应检索增强LLMs

  • 介绍了三种不同的检索增强LLM策略,并设计了一个自适应框架,根据查询的复杂度选择最合适的策略。
  • 该框架可以无缝地在不同的处理策略之间切换,而无需改变模型的内部结构或参数。

查询复杂度评估

  • 为了实现自适应框架,需要预先确定查询的复杂度。
  • 提出了一个复杂度分类器,它是一个较小的LM,训练用于将查询分类为不同的复杂度级别。

训练策略

  • 由于缺乏标注好的查询复杂度数据集,提出了一种自动构建训练数据集的方法。
  • 通过模型预测结果和数据集的固有偏差来自动生成标签。
  • 使用交叉熵损失训练分类器,并在推理时通过分类器来确定查询的复杂度。

实验设置(Experimental Setups)

数据集

  • 使用了单跳和多跳QA数据集,以模拟不同复杂度查询的真实场景。

模型

  • 比较了包括自适应检索增强策略在内的多种模型,并将它们分为简单、自适应和复杂三类。

评估指标

  • 使用了多个评估指标,包括F1、EM、准确率(Acc)以及处理每个查询所需的步骤和时间。

实现细节

  • 使用了特定的检索模型和文档语料库,并根据数据集类型选择不同的来源。
  • 对于LLM,使用了特定系列的模型,并遵循了特定的实现细节。

总结

  • 该框架能够根据查询的实际复杂度动态选择最合适的处理策略,从而在保持高效率的同时提高QA系统的准确性。
  • 通过这种方法,Adaptive-RAG旨在解决现有方法在处理不同复杂度查询时的不足,并在实际应用中提供更好的性能。

介绍

在实施大型语言模型(LLM)时,一个挑战是确保简单查询能够被有效识别,同时避免不必要的计算负担。另一方面,对于更复杂的多步骤查询,现有的实现可能无法提供充分的解决方案。然而,存在许多查询处于这两个极端之间,需要得到恰当的处理。

为了应对这一挑战,本研究提出了一种自适应的问答(QA)框架,该框架旨在为大型语言模型(特别是检索增强型LLM)根据查询的复杂性,从简单到复杂,选择最佳策略。

这一目标是通过训练一个分类器来实现的,该分类器是一个较小的语言模型,它可以通过自动收集来自真实模型预测和内置数据集模式的标签来预测查询的复杂性级别。

这种方法的灵活性在于,它能够在迭代和单步检索增强的LLM以及非检索方法之间无缝切换,以适应不同复杂性的查询。

该模型在多个包含不同查询复杂性的开放域QA数据集上进行了测试,并展现出相比相关基线(包括自适应检索方法)更高的整体效率和准确性。

自适应RAG

下图描绘了三种RAG问答方法的理念对比。

自适应RAG方法展示了一种机制,它能够根据分类器判断的查询复杂性,智能选择最恰当的策略,无论是采用迭代式、单步式,甚至是无需检索的方法。

显而易见,在自适应RAG框架中,分类器的角色对于整体性能的表现至关重要。

综上所述

观察下图,我们可以清楚地看到,在查询速度、性能质量和效率之间需要找到一个平衡点,同时成本也是一个不得不考虑的因素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值