人工智能_机器学习072_SVM支持向量机_人脸识别模型训练_训练时间过长解决办法_数据降维_LFW人脸数据建模与C参数选择---人工智能工作笔记0112

本文介绍了在使用支持向量机(SVM)进行人脸识别模型训练时,遇到训练时间过长的问题,通过引入PCA进行数据降维和使用网格搜索交叉验证(GridSearchCV)进行参数调优来解决。首先,通过PCA将11750个特征降至224个,显著缩短了训练时间。接着,利用GridSearchCV进行参数C和核函数的网格搜索,寻找最优参数组合,以平衡模型的泛化能力和训练速度。
摘要由CSDN通过智能技术生成
我们先来看一下之前的代码:
import numpy as np 导入数学计算库
from sklearn. svm import SVC 导入支持向量机 线性分类器
import matplotlib.pyplot as plt 加载人脸图片以后,我们用pyplot把人脸图片数据展示一下
from sklearn.model_selection import train_test_split 人脸的数据,我们需要拆分,所以这里我们再导入train_test_split
from sklearn.decomposition import PCA 然后我们再来导入这个PCA对数据进行降维,因为人脸数据比较大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值