Pytorch使用TensorboardX进行可视化的方法

简介

TensorboardX是用于深度学习框架pytorch可视化的工具,其类似于tensorflow的可视化工具tensorboard。本文将介绍如何使用TensorboardX。

安装

TensorboardX
Tensorflow
Tensorboard

使用方法(参考demoTensorboardX)

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

可视化

tensorboard --logdir ./DATE_USERNAME/ --port 6006

在使用tensorboard命令时,如果出现错误locale.Error: unsupported locale setting。
则在命令行执行:

export LANGUAGE=en_US.UTF-8  
export LC_ALL=en_US.UTF-8
export LC_ALL=C

接着再次执行tensorboard命令。终端显示如下:
tensorboard执行成功显示
在浏览器执行该http即可。

好的,我可以帮你解答这个问题! 首先,为了使用tensorboardx可视化Pytorch模型,你需要先安装tensorboardX库。你可以通过以下命令来安装: ``` pip install tensorboardX ``` 安装完成后,你需要在你的Pytorch代码中导入tensorboardX: ```python from tensorboardX import SummaryWriter ``` 接下来,在你的代码中创建一个`SummaryWriter`对象,它将负责记录你的模型的数据和可视化: ```python writer = SummaryWriter() ``` 现在你可以在代码中使用`writer`对象来记录任何你想要记录的数据。例如,你可以记录损失函数的值: ```python writer.add_scalar('Loss', loss_value, global_step) ``` 其中`loss_value`是损失函数的值,`global_step`是你的训练步数。 你也可以记录模型的权重和梯度: ```python writer.add_histogram('conv1/weights', conv1.weight, global_step) writer.add_histogram('conv1/grads', conv1.weight.grad, global_step) ``` 这将记录名为`conv1/weights`和`conv1/grads`的直方图,它们分别显示了`conv1`层的权重和梯度。 最后,在你的代码结束时,不要忘记关闭`SummaryWriter`对象: ```python writer.close() ``` 现在你可以在终端中输入以下命令来启动tensorboard: ``` tensorboard --logdir=/path/to/logs ``` 其中`/path/to/logs`是你保存日志文件的路径。然后在你的浏览器中访问`http://localhost:6006`,你将能够看到Pytorch模型的可视化结果。 希望这能够帮助你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值