Meta-Learning with Latent Embedding Optimization (LEO)论文阅读

1. 论文阅读

Meta-Learning with Latent Embedding Optimization该文是DeepMind提出的一种meta-learning算法,该算法是基于Chelsea Finn的MAML方法建立的,主要思想是:直接在低维的表示 z z z上执行MAML而不是在网络高维参数 θ \theta θ上执行MAML。

2. 模型及算法

在这里插入图片描述

如图所示,假设执行N-way K-shot的任务,encoder和relation net的输出是一个 2 N 2N 2N个类别独立的高斯分布的参数 z ∈ R n z z \in \mathbb{R}^{n_z} zRnz,即

Decoder是一个随机参数生成器,输出的是分类器参数 w n w_n wn,用于对输入 x x x做预测。
在这里插入图片描述

训练过程

  1. 首先在meta-training set预训练一个28层的WRN-28-10的网络,然后取前21层,并接上global average pooling layer。给定一张图片,输出特征 x ∈ R 640 x \in \mathbb{R}^{640} xR640,上图的 D t r D^{tr} Dtr, D v a l D^{val} Dval都是预处理得到的640维特征。
  2. 内循环:计算在support set上的损失,并只更新z而不是在模型的所有参数上,该过程重复多步。该步骤的目的为在线自适应。
    在这里插入图片描述
  3. 外循环:利用上一步内循环得到的分类器参数,计算在query set上的损失,用于更新网络encoder, relation net, decoder。
    在这里插入图片描述
    在这里插入图片描述

3. 实验结果

在这里插入图片描述
从实验结果可以看出:

  1. 单独使用了MAML的方法Meta-SGD的效果最差,而使用了Conditional generator only的效果相比单独使用MAML的提升很大,已经接近LEO了,这证明了参数生成方法是这个算法中是最有效的部分。
  2. 加入了MAML,也就是有fine-tuning的算法,相比没有使用的也有一定的提升。但是,通过对比LEO(no fine-tuning)和LEO(ours),可以发现fine-tuning对结果的影响并不显著。
  3. 通过对比deterministic及LEO(ours)的结果,似乎表明引入的随机性并不重要。

4. 总结

通过结果发现,最有效的部分似乎不在于低维表示空间的adaptation,也不在于模型引入的随机性,这与论文大篇幅强调的似乎有所出入,总的来说,虽然模型比较臃肿,但该算法本身是比较创新的,也实现了state-of-the-art,是一篇值得研究的论文。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Stable-Diffusion是一种用于图像生成、插值和修复的深度学习模型。其中,Latent Diffusion是Stable-Diffusion模型的一部分,用于对图像的低维表示进行扰动和采样,从而实现图像生成和插值。 具体来说,Latent Diffusion是一种基于扰动的采样方法,用于对图像的低维表示进行采样。在Latent Diffusion中,我们将原始的低维向量表示视为一个潜在状态,然后对这个潜在状态进行扰动,得到一系列新的潜在状态。接着,我们可以使用这些新的潜在状态来生成新的图像。 Latent Diffusion的作用是实现对图像低维表示的随机采样,从而实现图像生成和插值。通过对低维表示进行扰动,我们可以生成出多个不同的潜在状态,从而实现多样化的图像生成和插值。此外,Latent Diffusion还可以应用于图像修复,例如在图像中添加噪声或遮挡时,我们可以使用Latent Diffusion来恢复原始图像。 举个例子,假设我们想要生成一张全新的室内场景图像,我们可以使用Stable-Diffusion模型和Latent Diffusion来实现。首先,我们可以使用训练好的Stable-Diffusion模型生成一个初始的低维向量表示,并对这个低维向量表示进行扰动,得到一系列新的低维向量表示。接下来,我们可以使用Autoencoder模型对这些新的低维向量表示进行解码,生成一系列新的室内场景图像。这样,我们就可以生成出多样化的、具有室内场景特征的图像。同时,我们也可以使用Latent Diffusion来实现图像插值,例如将两个不同的低维向量表示进行线性插值,得到两张室内场景图像之间的中间图像。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值