图的基本概念

1、图的定义

    》》 图 G 顶点集合 V 和 边集合 E 组成, 记为 G = (V , E ) ,其中

            V(G)  表示图 G 中顶点的有限非空集;

            E(G) 表示图 G 中顶点之间的关系(边)集合。

             若  ,用 | V | 表示图 G 中顶点的个数,也称为图 G 的阶

              若  ,用 | E | 表示图 G 中边的条数

     》》 有向图

               若 E 是有向边(也称为“ 弧 ”)的有限集合时,则图 G 为有向图。弧是顶点的有序对,记为

            <v,w> , 其中 v 、 w 是顶点, v 称为 “ 弧头 ” , w 称为 “ 弧尾” ,称为从顶点 v 到顶点 w 的弧,

            也称为 v 邻接到 w ,或者 w 邻接自 v .

             案例: 有向图 G1 可表示为

                           1) G1 = ( V1 , E1)

                           2) V1 = {1 , 2 , 3 }

                           3) E1 = { <1 , 2 > , < 2 , 1 > , < 2 , 3 > }

                     

      

         》》 无向图

                 若 E 是无向边(简称“ 边 ”)的有限集合时,则图G为无向图。边是顶点的无序对,记为

             (v , w ) 或者 ( w , v ) ,因为 ( v, w) = ( w , v) ,其中 v 、 w 是顶点。可以说

              顶点 w 和顶点 v 互为邻接点。边(v , w) 依附于顶点 w 和 v ,或者说边 ( v , w)和顶点

              v 、 w 相关联。 

                  案例:  无向图 G1 可表示为

                           1) G1 = ( V1 , E1)

                           2) V1 = {1 , 2 , 3 ,4 }

                           3) E1 = { (1, 2),(1,3),(1,4),(2, 3),(2, 4),(3,4)}

                    

           》》 简单图

                    一个图 G 如果满足:1)不存在重复边

                                                       2)不存在顶点到自身的边

                    则称为“ 简单图 ” 。

           》》 多重图

                     若图 G 中某两个结点之间边数多于一条,又允许顶点通过同一条边与自身关联,则 

                G 为“ 多重图 ” 。《 多重图的定义和简单图是相对的》

           》》 完全图

                 ## 在无向图中,如果任意两个顶点之间都存在边,则称该图为“ 无向完全图 ”。

      含有 n 个顶点的无向完全图有 n(n-1)/2 条边。

                  ##  在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为

                      “ 有向完全图”。

                      含有 n 个顶点的有向完全图有 n(n-1) 条有向边。

            》》 子图

                  ## 设有两个图  和  ,若 是 V 的子集,且

                   是 E 的子集,则称   是 G 的 子图。

                        若有满足 的子图  ,则为 G 的生成子图。

                  注意:并非 V 和 E 的任何子集都能构成 G 的子图,因为这样的子集可能不是图

            》》 连通、连通图、连通分量  ====》 针对的是“ 无向图 ”

                 ## 在无向图中,若从顶点 v 到顶点 w 有路径存在,则称 v 到 w 是连通的。

                 ## 若图 G 中任意两个顶点都是连通的,则称图 G 为连通图,否则称为非连通图。

                 ## 无向图中的极大连通子图称为连通分量

                 补充1:区分“ 极大连通图 ” 和 “ 极小连通图 ”

                      极大连通图是无向图的连通分量,极大要求:该连通子图包含所有的边;

                    极小连通图是既要保持图连通,又要使得边数最少的子图。 

                  补充2:如果一个图中有 n 个顶点,并且有小于 n -1 条边,则此图必是非连通图。           

            》》 强连通图、强连通分量 ====》针对的是“ 有向图 ”

                   ##  在有向图中,若从顶点 v 到顶点 w 和顶点 w 到顶点 v 之间都有路径,则称这两个顶点

                     是强连通的。     

                   ## 若图中任何一对顶点都是强连通的,则称此图为强连通图

                   ## 有向图中的极大强连通子图称为有向图的强连通分量。       

              》》  生成树、生成森林

                    ## 连通图的生成树是包含图中全部顶点的一个极小连通图。       

                    ## 若图中顶点数 为 n ,则它的生成树含有 n-1 条边。         

              》》 顶点的度、入度和出度

                     ## 图中每个顶点的度定义为以该顶点为一个端点的边的数目

                     ## 对于无向图,顶点 v 的度是指依附于该顶点的边的条数,记为 TD(v)

                     ## 在具有 n 个顶点 e 条边的无向图中,有             。即无向图的

                       全部顶点的度之和等于边数的两倍,这是因为每条边和两个顶点相关联。

                     ## 对于有向图,顶点 v 的度分为“ 入度 ” 和 “ 出度 ” 

                           入度:以顶点 v 为终点的有向边的数目,记为 ID(v)

                           出度:以顶点 v 为起点的有向边的数目,记为 OD(v)

                           顶点的度等于其入度和出度的之和,即 TD(v) = ID(v) + OD(v) 。

                      ## 在具有 n 个顶点 e 条边的有向图中, 有 

                           即有向图的全部顶点的入度之和与出度之和相等并且等于边数。这是因为每条有向边都有一个

                           起点和终点。

                》》 边的权和网

                      ##  在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值。这种边上

                        带有权值的图称为“ 带权图 ” , 也称作“ 网 ”

                》》稠密图、稀疏图

                       ##  边树很少的图称为“ 稀疏图 ”,反之,称为“ 稠密图 ”。一般当图G 满足 

                             |E| < |V|*log|V| 时,可以将 G 看成是稀疏图。

                 》》 路径、路径长度、回路

                       ## 顶点  Vp 到顶点 Vq 之间的一条路径是指顶点序列 Vp , Vi1 , Vi2, ..., Vim , Vq

                       ## 路径上边的数目称为路径长度

                       ## 第一个顶点到最后一个顶点相同的路径称为回路或者

                       补充:如果一个图有 n 个顶点,并且有大于  n-1 条边,则此图一定有环

                  》》 简单路径、简单回路

                        ## 在路径序列中,顶点不重复出现的路径称为“ 简单路径 ”

                        ## 除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路称为“ 简单回路 ”。

                  》》 距离(最短路径)

                        ##    从顶点 u 到顶点 v 的最短路径存在,则此路径的长度称作从 u 到 v 的距离。

                               若从 u 到 v 根本不存在路径,则记该距离为无穷()。

                   》》 有向树

                        ## 有一个顶点的入度为 0 ,其余顶点的入度为 1 的有向图称作“ 有向树 ”。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小达人Fighting

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值