1、图的定义
》》 图 G 由顶点集合 V 和 边集合 E 组成, 记为 G = (V , E ) ,其中
V(G) 表示图 G 中顶点的有限非空集;
E(G) 表示图 G 中顶点之间的关系(边)集合。
若 ,用 | V | 表示图 G 中顶点的个数,也称为图 G 的阶,
若 ,用 | E | 表示图 G 中边的条数。
》》 有向图
若 E 是有向边(也称为“ 弧 ”)的有限集合时,则图 G 为有向图。弧是顶点的有序对,记为
<v,w> , 其中 v 、 w 是顶点, v 称为 “ 弧头 ” , w 称为 “ 弧尾” ,称为从顶点 v 到顶点 w 的弧,
也称为 v 邻接到 w ,或者 w 邻接自 v .
案例: 有向图 G1 可表示为
1) G1 = ( V1 , E1)
2) V1 = {1 , 2 , 3 }
3) E1 = { <1 , 2 > , < 2 , 1 > , < 2 , 3 > }
》》 无向图
若 E 是无向边(简称“ 边 ”)的有限集合时,则图G为无向图。边是顶点的无序对,记为
(v , w ) 或者 ( w , v ) ,因为 ( v, w) = ( w , v) ,其中 v 、 w 是顶点。可以说
顶点 w 和顶点 v 互为邻接点。边(v , w) 依附于顶点 w 和 v ,或者说边 ( v , w)和顶点
v 、 w 相关联。
案例: 无向图 G1 可表示为
1) G1 = ( V1 , E1)
2) V1 = {1 , 2 , 3 ,4 }
3) E1 = { (1, 2),(1,3),(1,4),(2, 3),(2, 4),(3,4)}
》》 简单图
一个图 G 如果满足:1)不存在重复边
2)不存在顶点到自身的边
则称为“ 简单图 ” 。
》》 多重图
若图 G 中某两个结点之间边数多于一条,又允许顶点通过同一条边与自身关联,则
G 为“ 多重图 ” 。《 多重图的定义和简单图是相对的》
》》 完全图
## 在无向图中,如果任意两个顶点之间都存在边,则称该图为“ 无向完全图 ”。
含有 n 个顶点的无向完全图有 n(n-1)/2 条边。
## 在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为
“ 有向完全图”。
含有 n 个顶点的有向完全图有 n(n-1) 条有向边。
》》 子图
## 设有两个图 和
,若
是 V 的子集,且
是 E 的子集,则称
是 G 的 子图。
若有满足 的子图
,则为 G 的生成子图。
注意:并非 V 和 E 的任何子集都能构成 G 的子图,因为这样的子集可能不是图。
》》 连通、连通图、连通分量 ====》 针对的是“ 无向图 ”
## 在无向图中,若从顶点 v 到顶点 w 有路径存在,则称 v 到 w 是连通的。
## 若图 G 中任意两个顶点都是连通的,则称图 G 为连通图,否则称为非连通图。
## 无向图中的极大连通子图称为连通分量。
补充1:区分“ 极大连通图 ” 和 “ 极小连通图 ”
极大连通图是无向图的连通分量,极大要求:该连通子图包含所有的边;
极小连通图是既要保持图连通,又要使得边数最少的子图。
补充2:如果一个图中有 n 个顶点,并且有小于 n -1 条边,则此图必是非连通图。
》》 强连通图、强连通分量 ====》针对的是“ 有向图 ”
## 在有向图中,若从顶点 v 到顶点 w 和顶点 w 到顶点 v 之间都有路径,则称这两个顶点
是强连通的。
## 若图中任何一对顶点都是强连通的,则称此图为强连通图。
## 有向图中的极大强连通子图称为有向图的强连通分量。
》》 生成树、生成森林
## 连通图的生成树是包含图中全部顶点的一个极小连通图。
## 若图中顶点数 为 n ,则它的生成树含有 n-1 条边。
》》 顶点的度、入度和出度
## 图中每个顶点的度定义为以该顶点为一个端点的边的数目
## 对于无向图,顶点 v 的度是指依附于该顶点的边的条数,记为 TD(v)
## 在具有 n 个顶点 e 条边的无向图中,有 。即无向图的
全部顶点的度之和等于边数的两倍,这是因为每条边和两个顶点相关联。
## 对于有向图,顶点 v 的度分为“ 入度 ” 和 “ 出度 ”
入度:以顶点 v 为终点的有向边的数目,记为 ID(v)
出度:以顶点 v 为起点的有向边的数目,记为 OD(v)
顶点的度等于其入度和出度的之和,即 TD(v) = ID(v) + OD(v) 。
## 在具有 n 个顶点 e 条边的有向图中, 有
即有向图的全部顶点的入度之和与出度之和相等并且等于边数。这是因为每条有向边都有一个
起点和终点。
》》 边的权和网
## 在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值。这种边上
带有权值的图称为“ 带权图 ” , 也称作“ 网 ”。
》》稠密图、稀疏图
## 边树很少的图称为“ 稀疏图 ”,反之,称为“ 稠密图 ”。一般当图G 满足
|E| < |V|*log|V| 时,可以将 G 看成是稀疏图。
》》 路径、路径长度、回路
## 顶点 Vp 到顶点 Vq 之间的一条路径是指顶点序列 Vp , Vi1 , Vi2, ..., Vim , Vq 。
## 路径上边的数目称为路径长度。
## 第一个顶点到最后一个顶点相同的路径称为回路或者环。
补充:如果一个图有 n 个顶点,并且有大于 n-1 条边,则此图一定有环。
》》 简单路径、简单回路
## 在路径序列中,顶点不重复出现的路径称为“ 简单路径 ”
## 除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路称为“ 简单回路 ”。
》》 距离(最短路径)
## 从顶点 u 到顶点 v 的最短路径存在,则此路径的长度称作从 u 到 v 的距离。
若从 u 到 v 根本不存在路径,则记该距离为无穷()。
》》 有向树
## 有一个顶点的入度为 0 ,其余顶点的入度为 1 的有向图称作“ 有向树 ”。