智能建筑云服务保护中的人工智能
在当今数字化时代,智能建筑的云服务和数据安全面临着诸多挑战,网络攻击可能会利用系统漏洞,对数据和服务造成严重威胁。因此,研究检测可利用漏洞和预防高危网络攻击的新方法变得尤为重要。本文将深入探讨人工智能和机器学习在智能建筑云服务保护中的应用,以及相关的网络空间和安全概念。
人工智能和机器学习基础
人工智能(AI)和机器学习(ML)是能够从数据中学习表示的学科,其中ML是AI的一个子集,包含深度学习(DL)和深度强化学习(DRL)等研究领域。AI模拟人类行为,ML则能根据情况自我调整,DL侧重于ML模型的结构大小,而DRL主要关注模型的学习方式,基于动作 - 反馈循环进行学习。
- 应用场景 :AI和ML在许多任务中取得了显著成功,如图像识别、分类、生成,自然语言处理,社交媒体监测,营销,预测健康监测,机器人技术和欺诈检测等。例如,利用ML进行Twitter上的仇恨言论检测,使用人工神经网络(ANN)预测建筑能源使用。
- 学习方法 :这些模型通常需要先进行算法训练,常见的训练方法包括监督学习、无监督学习和DRL。监督学习使用预标记的数据进行算法训练,无监督学习中ML算法自行估计标签,DRL则通过反馈进行学习,反馈可以来自人类专家或周围系统。
- 算法学习机制 :算法学习基于数据输入和期望输出,可抽象为函数表示:f(输入) = 输出。以神经网络(NN)为例,训练时会根据激活函数的结果改变隐藏值,直到模型达到足够的准确性,准确性通过最小化函数计算预测值与真实值的差异来衡量。
订阅专栏 解锁全文
18

被折叠的 条评论
为什么被折叠?



