5、无模型人机交互控制技术解析

无模型人机交互控制技术解析

在人机交互控制领域,无模型控制方法具有独特的优势,它能够在不依赖精确机器人动力学模型的情况下,实现稳定且高效的控制。本文将深入探讨无模型人机交互控制的相关技术,包括控制原理、不同控制策略以及实际应用案例。

1. 机器人动力学参数化

机器人动力学可以通过回归矩阵和参数向量的乘积进行参数化,表达式为:
[M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = Y(q, \dot{q}, \ddot{q})\Theta]
其中,(Y(q, \dot{q}, \ddot{q}) \in \mathbb{R}^{n\times p}) 是包含机器人动力学所有非线性函数的回归矩阵,(\Theta \in \mathbb{R}^{p}) 是参数向量。

2. 无模型导纳控制方案

无模型导纳控制方案需要位置参考,该参考可从期望的阻抗模型中获得:
[M_d(\ddot{x}_r - \ddot{x}_d) + B_d(\dot{x}_r - \dot{x}_d) + K_d(x_r - x_d) = f_e]
[\ddot{x}_r = \ddot{x}_d + M_d^{-1}[f_e - B_d(\dot{x}_r - \dot{x}_d) - K_d(x_r - x_d)]]

无模型控制器在任务空间中设计,无需机器人逆运动学知识。相关公式如下:
[\dot{q} = J^{-1}(q)\dot{x}]
(\dot{q}_s) 是名义参考:
[\dot{q}_s = J^{-1}(q)\dot{x}_s]
其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值