人脸活体论文速览:On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing

On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing

提出了利用Vision Transformer 预训练模型进行迁移学习,针对zero-shot 人脸活体检测任务。

说是迁移学习,实际只是做微调 。

说是zero-shot,但是模型方面并没有针对该任务做任何调整,是在评估时用zero-shot(即测试集包含训练集没给出的攻击方式)的评估方案。

模型图如下,就是An Image is Worth 16x16 Words Transformers for Image Recognition at Scale论文的翻版:

模型图

然后测试模型性能是在两个比较偏门的人类活体数据集上进行的。

作者提到会放预训练模型,到时候出来了再测试下效果。
总之,感觉是个水文,暂时pass掉吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值