一、背景
一提到艺术和手工艺品,我们就会想到很多创意和独特的设计,所以这类产品受到了很多人的喜爱与青睐。在互联网时代,艺术和手工艺品已成为我们网络购物中热门的销售品类之一。这里将针对艺术与手工艺网站进行用户分析、个性化推荐、以及购买决策分析,实现更智能化的服务。
二、用户分析
首先,需要对艺术与手工艺网站的用户进行分析,以更好地理解他们的需求与兴趣点。
1.用户分层
针对不同的用户群体:年龄、性别、地域、收入等方面进行分层分析,这有助于了解到用户的共性和差异性。例如:
(1)女性用户群体垂直分布较为广泛,从18岁到55岁不等,以年龄30岁-40岁之间的人为主。
(2)男女在地域上的选择相对稳定,主要的城市为北京、上海、广州和深圳等一线城市。
(3)大多数用户的收入层次较高,属于中高收入阶层,能够满足购买特殊和有设计感的艺术与手工艺品的能力。
2.用户偏好
为了更好地满足用户的需求,需要对用户的偏好进行分析。根据用户对产品的点击、收藏、购买等行为,了解用户的偏好,以此为基础开发个性化推荐系统。例如:
(1)超过60%的艺术手工艺品消费者喜欢个性化的设计,注重独特和创意的精神内涵。
(2)在购买过程中有关产品的材料、工艺、成本等信息都占据了较为重要的位置。
三、个性化推荐
了解用户的需求及其兴趣点后,就需要设计个性化推荐系统来更好地帮助用户筛选、推荐和选择产品。
1.推荐系统的概念与作用
推荐系统是一种基于机器学习和数据挖掘技术的应用程序,其主要目的是分析用户的行为、兴趣、社交网络等信息,从而呈现给用户最符合其需求的产品信息。推荐系统的作用:
(1)有效降低用户的选择成本
(2)提升用户的消费体验
(3)提高平台的销售量
(4)增加用户的粘性
2.推荐算法的选择
根据用户的购物行为、喜好,以及特定的需求,选择合适的算法为用户做出合理的推荐。例如:
(1)基于内容推荐算法,根据用户对商品的描述、标签、关键词等检索需求,从商品库中找出相关的商品推荐给用户。
(2)协同过滤推荐算法,是根据不同群体的个性化推荐矩阵,通过大数据分析找出相似的群体,然后根据他们的购物之前的商品品类推荐给当前用户。
(3)基于标签过滤推荐算法,通过分析平台的商品标签,找出与已知偏好相似的标签,然后将这些标签的商品推荐给用户。
3.实现个性化推荐的步骤
(1)收集并分析用户数据
(2)为商家和用户创建个性化档案
(3)应用机器学习技术进行模型训练和预测
(4)实现推荐系统的部署和优化
四、购买决策
用户对产品的购买决策是一个循序渐进的过程,就像一个漏斗一样,通过不断筛选与审视最终实现购买。通常,这个过程可以分为以下几个步骤:
1.认知
认知阶段是第一步,用户需要了解产品的基本信息,例如:产品功能、特性、材料、款式、品牌等等。网站的设计和传播渠道的品牌营销是影响用户认知的主要因素。
该文章由集锦科技(杭州网站建设 http://www.jijinweb.cn)原创编写。