卷积层对位置敏感,比如下面的例子中,一个像素的偏移就会导致0输出
而现实情况下,边缘很容易会发生变化。而我们并不希望它对位置过于敏感,所以提出了“池化层”
最大池化层可以允许输入发生一定范围内的偏移,作用在卷积输出上,有一定模糊化的效果
每个输入通道做一次池化层,而不像卷积层一样融合多个输入通道
import torch
from torch import nn
from d2l import torch as d2l
# 实现池化层的正向传播
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
# 验证二维最大池化层的输出
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
print(pool2d(X, (2, 2)))
# 验证平均池化层
print(pool2d(X, (2, 2), 'avg'))
# 填充和步幅
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
print(X)
# 深度学习框架中的步幅与池化窗口的大小相同,即相邻的两个窗口没有重叠部分
pool2d = nn.MaxPool2d(2)
print(pool2d(X))
# 填充和步幅可以手动设定
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
print(pool2d(X))
# 设定一个任意大小的矩形池化窗口,并分别设定填充和步幅的高度和宽度
pool2d = nn.MaxPool2d((2, 3), padding=(1, 1), stride=(2, 3))
print(pool2d(X))
# 池化层在每个输入通道上单独运算
X = torch.cat((X, X + 1), 1)
print(X)
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
print(pool2d(X))