lovep1
码龄6年
关注
提问 私信
  • 博客:68,837
    68,837
    总访问量
  • 28
    原创
  • 186,945
    排名
  • 40
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-06-04
博客简介:

lovep1的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    135
    当月
    0
个人成就
  • 获得89次点赞
  • 内容获得32次评论
  • 获得437次收藏
创作历程
  • 1篇
    2024年
  • 27篇
    2021年
成就勋章
TA的专栏
  • 笔记
  • 模型压缩加速
    8篇
  • 目标检测
    19篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

t-rex2开放集目标检测

可以作为zero-shot的检测器或者一些快速数据集生成的data-engine方式。
原创
发布博客 2024.03.24 ·
2470 阅读 ·
10 点赞 ·
0 评论 ·
25 收藏

Distilling Knowledge via Knowledge Review论文和源码阅读笔记

1、paper:https://arxiv.org/pdf/2104.09044.pdf2、code:https://github.com/dvlab-research/ReviewKD思谋科技出品的paper,d2的源码,是不是考虑白嫖一波,先分析一下paper的思想
原创
发布博客 2021.12.01 ·
1655 阅读 ·
3 点赞 ·
3 评论 ·
5 收藏

General Instance Distillation for Object Detection 论文和源码阅读笔记

paper:https://arxiv.org/pdf/2103.02340.pdfcode:GitHub - daixinghome/Distill_GID_detectron2首先给出论文链接和源码链接,默默地发现是基于D2的代码,说不定可以白嫖一波,先写一下论文,后续再仔细研读一下源码,旷视的工作还是很良心的,重点指出的是,这篇paper和我的上一篇kd的博客的paper都是覆盖anchor-based、anchor-free的,因此我觉得算是很不错的工作。1、abstract ..
原创
发布博客 2021.11.24 ·
2754 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

IMPROVE OBJECT DETECTION WITH FEATURE-BASEDKNOWLEDGE DISTILLATION: 论文和源码阅读笔记

paper:https://openreview.net/pdf?id=uKhGRvM8QNHcode:https://github.com/ArchipLab-LinfengZhang/Object-Detection-Knowledge-Distillation-ICLR20211、摘要: 开篇paper提到kd之所以在目标检测上的失败主要是两个原因:1、前景和背景之间的像素不平衡。 2、缺乏对不同像素之间的关系的蒸馏。基于这两个原因,本文提出了注意力引导机制和non-local机制来..
原创
发布博客 2021.11.23 ·
2419 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

knowledge distillation 综述

直接上论文survey:https://arxiv.org/pdf/2006.05525v6.pdf开局提到有数种模型加速的方法:1、权重共享和剪枝2、低秩分解3、转移的紧凑卷积滤波器:这些方法通过转移去除无关紧要的参数或压缩卷积滤波器4、KD然后摘要里面说明kd的key problem是如何将teacher模型里面的knowledge transfer到student模型,一个kd系统包括三个部分,knowledge、蒸馏算法,teacher模型。入下图所示:接下来文章回.
原创
发布博客 2021.11.22 ·
2473 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

关于目标检测的distillation的一点理解

1、常见的基本操作文章代表Learning Efficient Object Detection Models with Knowledge Distillation 如上图所示 , 首先在teacher-model和student-model的中间层featuemap进行学习和蒸馏,如果遇到st-model和te-model的feature-mapshape不一致时,则使用adaption模块来完成统一,然后计算l2距离。 其次,RPN\RCN部分的分类的暗知识以及回...
原创
发布博客 2021.10.31 ·
859 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DETR阅读笔记和源码理解:End-to-End Object Detection with Transformers

paper:https://arxiv.org/pdf/2005.12872.pdfcode:https://github.com/facebookresearch/detr近年,transformer开始大量从NLP引入计算机视觉,使得很多工作有了新的方向,本篇paper是第一篇端到端的将transformer引入目标检测和全景分割的工作,我对这个领域也没有那么熟悉,算是一起扫盲了,如果有新的idea,可以尝试复现一波,本文将按照paper的结构进行叙述(本篇paper解读只是占个坑,我对DETR
原创
发布博客 2021.04.06 ·
1845 阅读 ·
2 点赞 ·
0 评论 ·
17 收藏

YOLOF-You Only Look One-level Feature阅读笔记

paper:https://arxiv.org/abs/2103.09460code:https://github.com/megvii-model/YOLOF本文最大的贡献应该是对FPN重新进行了思考,从另外一个角度认为fpn解决的也许不是多尺度特征融合的问题,干掉了由于fpn带来的多级密集anchors带来的庞大计算量的问题,针对paper认为的fpn潜在解决的问题,paper提出了新的结构,替代fpn,使用单级featuremap预测,从而大幅度减少了计算量和训练时的迭代时间,本文将按照pap
原创
发布博客 2021.04.05 ·
426 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

详解卷积神经网络的反向传播原理-cnn反向传播、池化层的反向传播

本文详细讲解dnn和cnn的反向传播流程。其实无论是dnn还是cnn、pool层,最重要的是,我们要弄清楚反向传播的四个公式,弄清楚他们,我们就明白整个网络是如何运作和优化的,4个核心公式分别是: 1、输出层的误差方程 -这个是基础 2、误差传递方程 3、可训练参数权重w的变化率(梯度) 4、可训练参数偏置b的变化率(说到底其实网络就是在算误差,然后优化w和b,使得最后误差最小)同时理解各种层的前向推理过程,那么整个网络的流动和机制就相当清晰了。...
原创
发布博客 2021.03.18 ·
2772 阅读 ·
5 点赞 ·
1 评论 ·
18 收藏

详解常用的Batch Norm、Group Norm,Layer norm、Instance Norm

本文主要分析各种norm化方法,包括batch norm, group norm, instance norm,等,用的最多的肯定是batch norm,后续凯明何大佬又提出了gropu norm,但是其实在cv里面还没有真正的普及,尤其是在工业界部署上面,用的最多的还是batch norm,尤其是前两年大量paper提出基于BN层的模型剪枝方法、基于BN的融合卷积计算方法等(本文不提及,后续文章有需要会单独分析此类论文)后,batch-norm凸显的更加重要了,本文将不按照论文结构解析。1、batch
原创
发布博客 2021.03.15 ·
11515 阅读 ·
31 点赞 ·
4 评论 ·
119 收藏

详解各种iou损失函数的计算方式(iou、giou、ciou、diou)

本文主要是理解各个回归损失函数的区别和改进,其实最主要的还是这些损失函数在yolo中起到了非常大的作用,包括从最原始的yolov3中引入,到v4、v5中变成真正的官方损失函数,确实很有效。本文将逐条分析这些损失函数,并不会按照论文结构来描述。1、IOU paper:https://arxiv.org/pdf/1608.01471.pdf iou-loss本身是是从人脸检测的paper引入进来的,由于此文只分析损失函数比较简单,我们只讨论IOU-LOSS,先看paper的原图:...
原创
发布博客 2021.03.09 ·
19872 阅读 ·
22 点赞 ·
4 评论 ·
143 收藏

详解目标检测算法坐标回归方式-anchor-based方法

本文讨论或者复习一下目前最流行的深度学习目标检测算法的坐标回归方式,注意,本文讨论的是anchor-based,至于anchor-free的方法,每一种anchor-free各自对应一种后处理,咱们这边就不详细讨论了。一、常用的faster rcnn、retinanet、ssd等cls+reg head类型。 总体来说,根据anchor来提供初始坐标,然后利用anchor的初始值去回归线性变化时的参数(偏移值和尺寸值),最后将这些参数配合固定anchors成为具体的坐标,细节如下: ...
原创
发布博客 2021.03.06 ·
6375 阅读 ·
3 点赞 ·
2 评论 ·
40 收藏

ShuffleNet系列论文:从v1-v2

v1 paper:https://arxiv.org/pdf/1707.01083.pdfv2paper:https://arxiv.org/abs/1807.11164code:本文不提供code,参见各个框架的reademe讲道理,存在mobielnet的情况下,我对shuffleNet的用法就少了很多,最大的存在感是shuffleNetV2提出了嵌入式芯片设计网络时的准则,这个才是关键所在,其他的一般情况下还是用mobilenet比较成熟,配合检测算法用的也比较多,部署框架支持的也...
原创
发布博客 2021.03.03 ·
1095 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

mobilenet系列论文解读:从v1-v3

一文看遍mobilenet,毫无疑问,移动端的轻量级网络中mobienet肯定是首当其冲,从v1-v3,有着相当的提升和改进,但究其核心,最主要的还是引入了深度可分离卷积的计算,确实很有代表性,不过在v3中引入了NAS,这就比较玄学了,v3我没有直接复现过,只玩过基于它实现的目标检测网络,v3的yolov3我记得可以在voc上做到74%左右,效果挺好的,v1和v2的目标检测网络,比如mobilenet-ssd、mobilenet-yolo在部署的时候的确相当轻量化,尤其是当年mobilenetv1-ssd结
原创
发布博客 2021.03.01 ·
3167 阅读 ·
5 点赞 ·
6 评论 ·
17 收藏

deepsort阅读笔记

code:https://github.com/weixu000/libtorch-yolov3-deepsortdeepsort是我接触的最适合用来做部署的多目标跟踪框架,典型的detection based tracking(DBT)方式,效果也相当不错,据我所知,目前很多厂商包括科研机构都在此算法上做进一步创新,但实际上,整来整去也就是在提取特征的那个模型训练或者第一级的检测模型训练,原理上的创新真的很少。进一步的比对现在的完全基于深度学习的Siamese 系列(单目标追踪),我觉得落地效果真的要
原创
发布博客 2021.03.01 ·
560 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Learning Spatial Fusion for Single-Shot Object Detection one-stage-yolo优化

paper:https://arxiv.org/abs/1911.09516code:https://github.com/ruinmessi/ASFF
原创
发布博客 2021.02.25 ·
386 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Gaussian YOLOv3 An Accurate and Fast Object Detector Using Localization one-stage-yolo优化

paper:https://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.htmlcode:https://github.com/jwchoi384/Gaussian_YOLOv3
原创
发布博客 2021.02.24 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

one-stage-anchor-free CornerNet: Detecting Objects as Paired Keypoints

paper:https://arxiv.org/abs/1808.01244code:https://github.com/princeton-vl/CornerNet首先,这篇paper的代码我是没有跑通的(训练自己的数据集),但是是一篇非常具有开创性的paper,后面的centernet(object as points)等都是基于这个工作来做的,backbone用的是hourglass,讲道理,这个backbone实在是太重了,在以point为核心的one-stage检测算法中广泛应用,但实在
原创
发布博客 2021.02.23 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

one-stage-anchor-free CenterNet:Objects as Points

paper:https://arxiv.org/pdf/1904.07850.pdf官方代码:https://github.com/xingyizhou/CenterNet我的代码:https://github.com/panchengl/centernet_prune 首先提一下我的代码复现(torch),官方代码支持包括2d目标检测、3d检测、姿态估计任务,我移除了其他的任务,并简单的重构了代码,使得代码更加易读,然后基于我改后的代码完成了模型压缩(剪枝方案),并使用了VOC的测试方法(..
原创
发布博客 2021.02.22 ·
337 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

one-stage-anchor-free-fcosnet:FCOS: Fully Convolutional One-Stage Object Detection

paper:https://arxiv.org/pdf/1904.01355.pdfcode:https://github.com/tianzhi0549/FCOS我的复现:https://github.com/panchengl/pcldetection 当年经典的SOTA算法,现在似乎有点精度落后(但依旧很高),但是近期paper团队有重新对fcosnet做了实验进行改进,精度直接冲到SOTA了(我记得coco-ap达到0.49了),改动在哪忘了,先讨论原版的文章结构,有时间再写新的p..
原创
发布博客 2021.02.20 ·
399 阅读 ·
1 点赞 ·
3 评论 ·
3 收藏
加载更多