题目链接:http://poj.org/problem?id=2186
题目大意:
问至少加多少边,可以使得图变成双联通的。
算法:
双联通模板题。
比较特殊的是有重边。
那么在访问每条边的时候看一下它的反向边是否被访问即可。
求完双联通并缩点之后,统计出树中度为1的节点的个数,即为叶节点的个数。
每次在两个相隔最远的点直接连一条边即可。
代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int head[1100],low[1100],dis[1100],d[1100],p[1100],pre[1100],cot,E,n,m;
bool hash[3000];
struct
{
int u,v,nxt;
} edge[3000];
void addedge(int u,int v)
{
edge[E].u=u;
edge[E].v=v;
edge[E].nxt=head[u];
head[u]=E++;
edge[E].u=v;
edge[E].v=u;
edge[E].nxt=head[v];
head[v]=E++;
}
int findr(int x)
{
if(p[x]<0)return x;
return p[x]=findr(p[x]);
}
void reunion(int x,int y)
{
int px=findr(x);
int py=findr(y);
if(px!=py)
p[px]=py;
return;
}
void dfs(int u)
{
low[u]=dis[u];
for(int i=head[u]; i!=-1; i=edge[i].nxt)
{
hash[i]=1;
int v=edge[i].v;
if(dis[v]==-1)
{
pre[v]=u;
dis[v]=cot++;
dfs(v);
low[u]=low[u]<low[v]?low[u]:low[v];
}
else if(pre[u]!=v)
{
low[u]=low[u]<dis[v]?low[u]:dis[v];
}
else if(!hash[i^1])
{
low[u]=low[u]<dis[v]?low[u]:dis[v];
}
}
return;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
E=0;
memset(dis,-1,sizeof(dis));
memset(d,0,sizeof(d));
memset(head,-1,sizeof(head));
memset(hash,0,sizeof(hash));
memset(p,-1,sizeof(p));
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
cot=0;
dis[1]=cot++;
dfs(1);
memset(hash,0,sizeof(hash));
for(int i=0; i<E; i++)
{
if(pre[edge[i].v]==edge[i].u&&dis[edge[i].u]<low[edge[i].v])
hash[i]=hash[i^1]=1;
}
for(int i=0; i<E; i+=2)
{
if(hash[i])continue;
reunion(edge[i].u,edge[i].v);
}
for(int i=0; i<E; i+=2)
{
if(hash[i])
{
int u=findr(edge[i].u);
int v=findr(edge[i].v);
d[u]++;
d[v]++;
}
}
int ans=0;
for(int i=1; i<=n; i++)
if(p[i]<0&&d[i]==1)ans++;
printf("%d\n",(ans+1)/2);
}
return 0;
}