基于标题分类的文章主题句识别与提取方法

本文提出了一种基于标题分类的主题句提取方法。首先构造新闻主题词集,接着对标题进行分类,判断其是否具有提示性。然后,通过多种特征计算句子的重要性,提取主题句。特征包括句子的相对词频、位置、长度、命名实体和与标题的重合度。最后,使用GIS迭代算法估计特征权重,确定最优组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于标题分类的主题句提取方法

代码实现地址:点击打开链接

基于标题分类的主题句提取方法可描述为: 给定一篇新闻报道, 计算标题与新闻主题词集的相似度, 判断标题是否具有提示性。对于提示性标题,抽取新闻报道中与其最相似的句子作为主题句; 否则, 综合利用多种特征计算新闻报道中句子的重要性, 将得分最高的句子作为主题句。

算法过程:


1.      构造新闻的主题词集

(1)      对于爬取的有标签的或关键词的文章,将标签作为主题词集的一部分。

(2)      对文本做预处理,分句、分词并去除停用词,词性过滤、词频过滤。

(3)      使用TF-IDF计算文章中每个词的权重,该处主要是计算词的权重,也可以使用其他方法如word2vec,进行主题词提取。然后选取K个词作为主题词集。加上标签共选20个词作为每篇文章的主题词集。

2.      标题分类

将标题分为两类,一类是有提示性,一类是没有提示性。计算标题与主题词集的相似度。

&

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值