目录:
1、推导电容电流公式
2、通过微分方程求解
3、推导电容电压公式
4、Multisim仿真
5、时间常数在线计算
1、推导电容电流公式
本内容采用三种方法得到电容电压的计算公式,其中“2)直接推导电压公式”较为直接。如若不想看公式的推导过程,可以直接跳转至“4、Multisim仿真”。
图1.1 1阶RC电路
图1.2 1阶RC充放电波形
令 Vs 为电源电压,Vc 电容两端电压,Vr 电阻两端电压;流过串联电路的电流定义为 i。
根据基尔霍夫电压定律(KVL),回路中的电压降之和为零。因此有:
根据得:
,即
∵ 电流即电荷对时间微分
∴ ,即
两边分别积分得:
设,得
∵
∴ ,已知:
经过变换可得:
∵ 电流即电荷对时间微分
再根据积与复合函数的求导法则可知:
∴
整理可得
2、通过微分方程求解
根据基尔霍夫电压定律(KVL),回路中的电压降之和为零。因此有:
由于电阻上的电压降与电流成正比,即:
代入上式得:
将电容的电压电流关系式代入上式,得:
为了解这个微分方程,我们可以将其改写为:
进一步整理为:
这是一个 1阶线性微分方程,其解为:其中,V0 是电容的初始电压(在 t = 0 时的电压)。
将电容电压的表达式代入电容的电压电流关系式,得:
计算导数后,得:
如果初始时电容未充电(即 V0 = 0),则上式简化为:
3、推导电容电压公式
1)电流公式推导电压公式
由公式得到:
根据基尔霍夫电压定律(KVL):,可以推导出
∴
做一下变形可得: 1阶零状态响应。
2)直接推导电压公式
由与
可得流过电容的电流:
电阻两端电压:,变形可得:
两边分别积分:
设,得
∵
∴ ,已知:
经过变换可得: 1阶零状态响应。
t = RC | e^(-1) ≈ 36.8% | 1-e^(-t/RC) = 63.2%Vs |
t = 2.3RC | e^(-2.3) ≈ 10% | 1-e^(-t/RC) = 90%Vs |
t = 3RC | e^(-3) ≈ 5% | 1-e^(-t/RC) = 95%Vs |
t = 5RC | e^(-5) ≈ 1% | 1-e^(-t/RC) = 99%Vs |
4、Multisim仿真
图4.1 1阶RC的Multisim仿真(原文件)
通常以时间常数 τ = RC 度量电容充电时间,如图4.1 所示。
光标1:x1 = 1mS 即 1τ 时,电容C 上的充电电压 y1 = 3.1672V,达到 3.1672V/5V = 63.2%;
光标2:x2 = 3mS即 3τ 时,电容C 上的充电电压 y1 = 4.7515V,达到 4.7515V/5V = 95%。
时间常数 | 充电电压 | 放电电压 |
t = 1τ | 63.2% | 36.8% |
t = 2.3τ | 90% | 10% |
t = 3τ | 95% | 5% |
t = 5τ | 99% | 1% |
5、时间常数在线计算
EDA365电巢:EDA365在线工具
电子发烧友:电子技术资料工具-电子发烧友
如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。