步骤详尽的电容充放电时间计算

目录:

1、推导电容电流公式

2、通过微分方程求解

3、推导电容电压公式

4、Multisim仿真

5、时间常数在线计算


下续:RC电路计算(含微分、积分电路)


1、推导电容电流公式

本内容采用三种方法得到电容电压的计算公式,其中“2)直接推导电压公式”较为直接。如若不想看公式的推导过程,可以直接跳转至“4、Multisim仿真”。

图1.1 1阶RC电路

图1.2 1阶RC充放电波形

令 Vs 为电源电压,Vc 电容两端电压,Vr 电阻两端电压;流过串联电路的电流定义为 i。

根据基尔霍夫电压定律(KVL),回路中的电压降之和为零。因此有:

根据得:,即

∵ 电流即电荷对时间微分

∴ ,即

两边分别积分得:

,得

∵ 

∴ ,已知:

经过变换可得:

 ∵ 电流即电荷对时间微分

再根据积与复合函数的求导法则可知:

∴ 

整理可得

2、通过微分方程求解

根据基尔霍夫电压定律(KVL),回路中的电压降之和为零。因此有:

由于电阻上的电压降与电流成正比,即:

代入上式得:

将电容的电压电流关系式代入上式,得:

为了解这个微分方程,我们可以将其改写为:

进一步整理为:

这是一个 1阶线性微分方程,其解为:其中,V0​ 是电容的初始电压(在 t = 0 时的电压)。

将电容电压的表达式代入电容的电压电流关系式,得:

计算导数后,得:

如果初始时电容未充电(即 V0 ​= 0),则上式简化为:

3、推导电容电压公式

1)电流公式推导电压公式

由公式得到:

根据基尔霍夫电压定律(KVL):,可以推导出

∴ 

做一下变形可得: 1阶零状态响应

2)直接推导电压公式

可得流过电容的电流:

电阻两端电压:,变形可得:

两边分别积分:

,得

∵ 

∴  ,已知:

经过变换可得: 1阶零状态响应

t = RCe^(-1) ≈ 36.8%1-e^(-t/RC) = 63.2%Vs
t = 2.3RCe^(-2.3) ≈ 10%1-e^(-t/RC) = 90%Vs
t = 3RCe^(-3) ≈ 5%1-e^(-t/RC) = 95%Vs
t = 5RCe^(-5) ≈ 1%1-e^(-t/RC) = 99%Vs

4、Multisim仿真

图4.1 1阶RC的Multisim仿真(原文件)

通常以时间常数 τ = RC 度量电容充电时间,如图4.1 所示。

光标1:x1 = 1mS 即 1τ 时,电容C 上的充电电压 y1 = 3.1672V,达到 3.1672V/5V = 63.2%; 

光标2:x2 = 3mS即 3τ 时,电容C 上的充电电压 y1 = 4.7515V,达到 4.7515V/5V = 95%。

时间常数充电电压放电电压
t = 1τ63.2%36.8%
t = 2.3τ90%10%
t = 3τ95%5%
t = 5τ99%1%

5、时间常数在线计算

EDA365电巢:EDA365在线工具

电子发烧友:电子技术资料工具-电子发烧友


如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值