【Image captioning】论文1(网格特征)In Defense of Grid Features for Visual Question Answering(CVPR2020)

该博客详细分析了网格特征在视觉问答任务中的有效性,挑战了区域特征的主导地位。作者指出,网格特征在速度上有显著优势,且在准确率上与区域特征相当。实验表明,使用相同模型直接从C5层提取的网格特征表现出奇的好。此外,研究发现输入图像大小和预训练任务是影响网格特征效果的关键因素。作者强调,网格特征可以实现端到端训练,且在多种任务中展现出强大性能,为视觉和语言研究提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Image captioning】论文精读之–(网格特征)In Defense of Grid Features for Visual Question Answering(CVPR2020)

作者:安静到无声 个人主页

作者简介:人工智能和硬件设计博士生、CSDN与阿里云开发者博客专家,多项比赛获奖者,发表SCI论文多篇。

Thanks♪(・ω・)ノ 如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦! o( ̄▽ ̄)d

ლ(°◕‵ƹ′◕ლ)希望在传播知识、分享知识的同时能够启发你,大家共同进步。ヾ(◍°∇°◍)ノ゙

喜欢本专栏的小伙伴,请多多支持

【Image captioning】图像字幕预处理从零到掌握之一–自定义文本数据整理为类似Flickr8k.token.txt的格式→助力后期生成JSON格式用于训练
【Image captioning】图像字幕预处理从零到掌握之二–成功实现将Flickr8k.token.txt转换为JSON格式(其他数据集可仿照迁移)
【Image captioning】Show, Attend, and Tell 从零到掌握之一–A PyTorch Tutorial to Image Captioning代码调试(跑通)
【Image captioning】Show, Attend, and Tell 从零到掌握之二–create_input_files.py代码详解
【Image captioning】Show, Attend, and Tell 从零到掌握之三–train.py代码详解
【Image captioning】Show, Attend, and Tell 从零到掌握之四–utils.py代码详解
【Image captioning】论文精读一–(网格特征)In Defense of Grid Features for Visual Question Answering(CVPR2020)
【Image captioning】论文精读二–(网格特征)(COS-Net)Comprehending and Ordering Semantics for Image Captioning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV视界

如果感觉有用,可以打赏哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值