第P5周:运动鞋识别

>- 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

要求:

  1. 了解如何设置动态学习率(重点)
  2. 调整代码使测试集accuracy到达84%。

拔高(可选):

  1. 保存训练过程中的最佳模型权重
  2. 调整代码使测试集accuracy到达86%。

一、前期工作

我的环境:

● 语言环境:Python3.8
● 编译器:Jupyter Lab
● 深度学习环境:Pytorch
● 数据集:🔗K同学啊的百度网盘、🔗和鲸

一、 前期准备

  1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU,我这里是使用CPU.

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cpu')

2. 导入数据

import os,PIL,random,pathlib

data_dir = './P5/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

代码输出:

    ['test', 'train']

● 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
● 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
● 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中
● 第四步:打印classeNames列表,显示每个文件所属的类别名称。

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder("./P5/train/",transform=train_transforms)
test_dataset  = datasets.ImageFolder("./P5/test/",transform=train_transforms)
train_dataset.class_to_idx

代码输出:
{‘adidas’: 0, ‘nike’: 1}

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
	break

代码输出:
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64

二、构建简单的CNN网络
网络结构图:
在这里插入图片描述

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1=nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.conv2=nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.pool3=nn.Sequential(
            nn.MaxPool2d(2))                              # 12*108*108
        
        self.conv4=nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.conv5=nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.pool6=nn.Sequential(
            nn.MaxPool2d(2))                              # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))
        
        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))
        
    def forward(self, x):
        
        batch_size = x.size(0)
        x = self.conv1(x)  # 卷积-BN-激活
        x = self.conv2(x)  # 卷积-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷积-BN-激活
        x = self.conv5(x)  # 卷积-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)
       
        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
model

代码输出:

Using cpu device

Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)

**三、 训练模型

  1. 编写训练函数**
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

调用官方动态学习率接口
与上面方法是等价的

# # 调用官方动态学习率接口时使用
# lambda1 = lambda epoch: (0.92 ** (epoch // 2)
# optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

4. 正式训练

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

代码输出:

Epoch: 1, Train_acc:51.8%, Train_loss:0.750, Test_acc:55.3%, Test_loss:0.686, Lr:1.00E-04
Epoch: 2, Train_acc:61.0%, Train_loss:0.682, Test_acc:64.5%, Test_loss:0.671, Lr:1.00E-04
Epoch: 3, Train_acc:63.3%, Train_loss:0.644, Test_acc:57.9%, Test_loss:0.756, Lr:9.20E-05
Epoch: 4, Train_acc:70.5%, Train_loss:0.585, Test_acc:61.8%, Test_loss:0.599, Lr:9.20E-05
Epoch: 5, Train_acc:73.5%, Train_loss:0.566, Test_acc:65.8%, Test_loss:0.620, Lr:8.46E-05
Epoch: 6, Train_acc:77.9%, Train_loss:0.503, Test_acc:69.7%, Test_loss:0.558, Lr:8.46E-05
Epoch: 7, Train_acc:78.3%, Train_loss:0.500, Test_acc:69.7%, Test_loss:0.592, Lr:7.79E-05
Epoch: 8, Train_acc:80.9%, Train_loss:0.467, Test_acc:69.7%, Test_loss:0.631, Lr:7.79E-05
Epoch: 9, Train_acc:80.1%, Train_loss:0.468, Test_acc:67.1%, Test_loss:0.573, Lr:7.16E-05
Epoch:10, Train_acc:83.7%, Train_loss:0.446, Test_acc:71.1%, Test_loss:0.587, Lr:7.16E-05
Epoch:11, Train_acc:84.7%, Train_loss:0.413, Test_acc:78.9%, Test_loss:0.546, Lr:6.59E-05
Epoch:12, Train_acc:86.5%, Train_loss:0.404, Test_acc:78.9%, Test_loss:0.539, Lr:6.59E-05
Epoch:13, Train_acc:87.8%, Train_loss:0.381, Test_acc:72.4%, Test_loss:0.564, Lr:6.06E-05
Epoch:14, Train_acc:84.9%, Train_loss:0.391, Test_acc:80.3%, Test_loss:0.493, Lr:6.06E-05
Epoch:15, Train_acc:88.0%, Train_loss:0.381, Test_acc:76.3%, Test_loss:0.537, Lr:5.58E-05
Epoch:16, Train_acc:88.6%, Train_loss:0.358, Test_acc:77.6%, Test_loss:0.543, Lr:5.58E-05
Epoch:17, Train_acc:87.1%, Train_loss:0.363, Test_acc:72.4%, Test_loss:0.533, Lr:5.13E-05
Epoch:18, Train_acc:90.0%, Train_loss:0.344, Test_acc:72.4%, Test_loss:0.501, Lr:5.13E-05
Epoch:19, Train_acc:91.8%, Train_loss:0.332, Test_acc:78.9%, Test_loss:0.497, Lr:4.72E-05
Epoch:20, Train_acc:90.2%, Train_loss:0.335, Test_acc:73.7%, Test_loss:0.511, Lr:4.72E-05
Epoch:21, Train_acc:91.6%, Train_loss:0.333, Test_acc:73.7%, Test_loss:0.490, Lr:4.34E-05
Epoch:22, Train_acc:89.4%, Train_loss:0.338, Test_acc:77.6%, Test_loss:0.498, Lr:4.34E-05
Epoch:23, Train_acc:92.6%, Train_loss:0.309, Test_acc:78.9%, Test_loss:0.514, Lr:4.00E-05
Epoch:24, Train_acc:90.8%, Train_loss:0.322, Test_acc:75.0%, Test_loss:0.523, Lr:4.00E-05
Epoch:25, Train_acc:91.8%, Train_loss:0.307, Test_acc:80.3%, Test_loss:0.539, Lr:3.68E-05
Epoch:26, Train_acc:91.8%, Train_loss:0.315, Test_acc:78.9%, Test_loss:0.488, Lr:3.68E-05
Epoch:27, Train_acc:93.4%, Train_loss:0.298, Test_acc:76.3%, Test_loss:0.505, Lr:3.38E-05
Epoch:28, Train_acc:94.0%, Train_loss:0.296, Test_acc:80.3%, Test_loss:0.502, Lr:3.38E-05
Epoch:29, Train_acc:93.8%, Train_loss:0.298, Test_acc:75.0%, Test_loss:0.535, Lr:3.11E-05
Epoch:30, Train_acc:93.8%, Train_loss:0.289, Test_acc:75.0%, Test_loss:0.526, Lr:3.11E-05
Epoch:31, Train_acc:94.0%, Train_loss:0.288, Test_acc:77.6%, Test_loss:0.574, Lr:2.86E-05
Epoch:32, Train_acc:94.6%, Train_loss:0.275, Test_acc:77.6%, Test_loss:0.514, Lr:2.86E-05
Epoch:33, Train_acc:94.2%, Train_loss:0.279, Test_acc:76.3%, Test_loss:0.470, Lr:2.63E-05
Epoch:34, Train_acc:93.8%, Train_loss:0.273, Test_acc:75.0%, Test_loss:0.471, Lr:2.63E-05
Epoch:35, Train_acc:93.6%, Train_loss:0.276, Test_acc:75.0%, Test_loss:0.499, Lr:2.42E-05
Epoch:36, Train_acc:92.4%, Train_loss:0.282, Test_acc:75.0%, Test_loss:0.476, Lr:2.42E-05
Epoch:37, Train_acc:92.8%, Train_loss:0.283, Test_acc:78.9%, Test_loss:0.542, Lr:2.23E-05
Epoch:38, Train_acc:94.8%, Train_loss:0.267, Test_acc:76.3%, Test_loss:0.489, Lr:2.23E-05
Epoch:39, Train_acc:95.6%, Train_loss:0.263, Test_acc:75.0%, Test_loss:0.468, Lr:2.05E-05
Epoch:40, Train_acc:94.0%, Train_loss:0.272, Test_acc:76.3%, Test_loss:0.503, Lr:2.05E-05
Done

四、 结果可视化
1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
2. 指定图片进行预测

torch.squeeze()详解
对数据的维度进行压缩,去掉维数为1的的维度

函数原型:
torch.squeeze(input, dim=None, *, out=None)

关键参数说明:
● input (Tensor):输入Tensor
● dim (int, optional):如果给定,输入将只在这个维度上被压缩

实战案例:
>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])

torch.unsqueeze()
对数据维度进行扩充。给指定位置加上维数为一的维度
函数原型:
torch.unsqueeze(input, dim)
关键参数说明:
● input (Tensor):输入Tensor
● dim (int):插入单例维度的索引

实战案例:

>>> x = torch.tensor([1, 2, 3, 4])
>>> torch.unsqueeze(x, 0)
tensor([[ 1,  2,  3,  4]])
>>> torch.unsqueeze(x, 1)
tensor([[ 1],
        [ 2],
        [ 3],
        [ 4]])
from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    print(_)
# 预测训练集中的某张照片
predict_one_image(image_path='./P5/test/adidas/11.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
预测结果是:adidas
tensor([1.0715], grad_fn=<MaxBackward0>)

五、保存并加载模型

# 模型保存
PATH = './P5.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

代码输出:

<All keys matched successfully>

六、动态学习率
1. torch.optim.lr_scheduler.StepLR
等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。
函数原型:
torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解:
● optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
● step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
● gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

2. lr_scheduler.LambdaLR
根据自己定义的函数更新学习率。

函数原型:
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

用法示例:

lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3. lr_scheduler.MultiStepLR
在特定的 epoch 中调整学习率

函数原型:
torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解:
● optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
● milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
● gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, 
                                                 milestones=[2,6,15], #调整学习率的epoch数
                                                 gamma=0.1)

更多的官方动态学习率设置方式可参考:https://pytorch.org/docs/stable/optim.html

调用官方接口示例:

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

七、总结
1、将初始学习率learn_rate 修改为 1e-3 ,可以使测试集accuracy到达84%,结果如下所示:

Epoch: 1, Train_acc:51.2%, Train_loss:3.345, Test_acc:50.0%, Test_loss:1.239, Lr:1.00E-03
Epoch: 2, Train_acc:57.8%, Train_loss:2.195, Test_acc:59.2%, Test_loss:1.092, Lr:1.00E-03
Epoch: 3, Train_acc:66.5%, Train_loss:1.389, Test_acc:71.1%, Test_loss:0.646, Lr:9.20E-04

Epoch:38, Train_acc:100.0%, Train_loss:0.047, Test_acc:84.2%, Test_loss:0.397, Lr:2.23E-04
Epoch:39, Train_acc:100.0%, Train_loss:0.043, Test_acc:82.9%, Test_loss:0.414, Lr:2.05E-04
Epoch:40, Train_acc:99.8%, Train_loss:0.046, Test_acc:84.2%, Test_loss:0.393, Lr:2.05E-04
Done

2、将下面的代码:

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

修改为如下的代码:

learn_rate = 1e-4 # 初始学习率
lambda1 = lambda epoch: (0.92 ** (epoch // 2))
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

可以使测试集accuracy到达88.2%,结果如下所示:

Epoch: 1, Train_acc:54.6%, Train_loss:0.757, Test_acc:47.4%, Test_loss:0.695, Lr:1.00E-04
Epoch: 2, Train_acc:61.6%, Train_loss:0.681, Test_acc:63.2%, Test_loss:0.625, Lr:1.00E-04
Epoch: 3, Train_acc:64.7%, Train_loss:0.621, Test_acc:64.5%, Test_loss:0.601, Lr:1.00E-04
Epoch: 4, Train_acc:69.7%, Train_loss:0.594, Test_acc:72.4%, Test_loss:0.594, Lr:1.00E-04
Epoch: 5, Train_acc:72.9%, Train_loss:0.559, Test_acc:71.1%, Test_loss:0.572, Lr:1.00E-04
Epoch: 6, Train_acc:76.3%, Train_loss:0.532, Test_acc:69.7%, Test_loss:0.559, Lr:1.00E-04
Epoch: 7, Train_acc:77.5%, Train_loss:0.498, Test_acc:77.6%, Test_loss:0.502, Lr:1.00E-04
Epoch: 8, Train_acc:79.9%, Train_loss:0.474, Test_acc:73.7%, Test_loss:0.503, Lr:1.00E-04
Epoch: 9, Train_acc:80.7%, Train_loss:0.461, Test_acc:73.7%, Test_loss:0.488, Lr:1.00E-04
Epoch:10, Train_acc:84.5%, Train_loss:0.429, Test_acc:78.9%, Test_loss:0.488, Lr:1.00E-04
Epoch:11, Train_acc:85.9%, Train_loss:0.408, Test_acc:77.6%, Test_loss:0.472, Lr:1.00E-04
Epoch:12, Train_acc:87.1%, Train_loss:0.390, Test_acc:77.6%, Test_loss:0.470, Lr:1.00E-04
Epoch:13, Train_acc:89.0%, Train_loss:0.381, Test_acc:82.9%, Test_loss:0.439, Lr:1.00E-04
Epoch:14, Train_acc:89.4%, Train_loss:0.362, Test_acc:82.9%, Test_loss:0.456, Lr:1.00E-04
Epoch:15, Train_acc:89.0%, Train_loss:0.364, Test_acc:78.9%, Test_loss:0.480, Lr:1.00E-04
Epoch:16, Train_acc:89.6%, Train_loss:0.356, Test_acc:84.2%, Test_loss:0.421, Lr:1.00E-04
Epoch:17, Train_acc:90.2%, Train_loss:0.333, Test_acc:77.6%, Test_loss:0.446, Lr:1.00E-04
Epoch:18, Train_acc:91.8%, Train_loss:0.330, Test_acc:81.6%, Test_loss:0.444, Lr:1.00E-04
Epoch:19, Train_acc:90.6%, Train_loss:0.307, Test_acc:81.6%, Test_loss:0.452, Lr:1.00E-04
Epoch:20, Train_acc:93.6%, Train_loss:0.297, Test_acc:85.5%, Test_loss:0.403, Lr:1.00E-04
Epoch:21, Train_acc:92.6%, Train_loss:0.300, Test_acc:86.8%, Test_loss:0.426, Lr:1.00E-04
Epoch:22, Train_acc:93.6%, Train_loss:0.286, Test_acc:84.2%, Test_loss:0.395, Lr:1.00E-04
Epoch:23, Train_acc:94.4%, Train_loss:0.277, Test_acc:85.5%, Test_loss:0.411, Lr:1.00E-04
Epoch:24, Train_acc:94.8%, Train_loss:0.261, Test_acc:86.8%, Test_loss:0.374, Lr:1.00E-04
Epoch:25, Train_acc:93.8%, Train_loss:0.264, Test_acc:84.2%, Test_loss:0.422, Lr:1.00E-04
Epoch:26, Train_acc:95.4%, Train_loss:0.251, Test_acc:84.2%, Test_loss:0.394, Lr:1.00E-04
Epoch:27, Train_acc:96.2%, Train_loss:0.242, Test_acc:88.2%, Test_loss:0.360, Lr:1.00E-04
Epoch:28, Train_acc:97.0%, Train_loss:0.237, Test_acc:84.2%, Test_loss:0.386, Lr:1.00E-04
Epoch:29, Train_acc:96.0%, Train_loss:0.227, Test_acc:84.2%, Test_loss:0.390, Lr:1.00E-04
Epoch:30, Train_acc:95.2%, Train_loss:0.229, Test_acc:86.8%, Test_loss:0.391, Lr:1.00E-04
Epoch:31, Train_acc:97.0%, Train_loss:0.210, Test_acc:86.8%, Test_loss:0.346, Lr:1.00E-04
Epoch:32, Train_acc:96.6%, Train_loss:0.217, Test_acc:88.2%, Test_loss:0.353, Lr:1.00E-04
Epoch:33, Train_acc:97.0%, Train_loss:0.200, Test_acc:86.8%, Test_loss:0.358, Lr:1.00E-04
Epoch:34, Train_acc:97.0%, Train_loss:0.202, Test_acc:86.8%, Test_loss:0.334, Lr:1.00E-04
Epoch:35, Train_acc:97.6%, Train_loss:0.201, Test_acc:84.2%, Test_loss:0.405, Lr:1.00E-04
Epoch:36, Train_acc:97.2%, Train_loss:0.193, Test_acc:84.2%, Test_loss:0.369, Lr:1.00E-04
Epoch:37, Train_acc:97.4%, Train_loss:0.192, Test_acc:86.8%, Test_loss:0.377, Lr:1.00E-04
Epoch:38, Train_acc:98.2%, Train_loss:0.186, Test_acc:82.9%, Test_loss:0.340, Lr:1.00E-04
Epoch:39, Train_acc:97.8%, Train_loss:0.183, Test_acc:82.9%, Test_loss:0.361, Lr:1.00E-04
Epoch:40, Train_acc:97.8%, Train_loss:0.178, Test_acc:88.2%, Test_loss:0.331, Lr:1.00E-04
Done

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值