【数据压缩】Exp04_DPCM量化预测编码

本文介绍DPCM编码原理,通过差分预测和8bit均匀量化降低信源码率。实验显示,该方法引入的误差较小,对图像质量影响不明显。通过熵编码进一步压缩数据,概率分布更集中,压缩效果良好。
摘要由CSDN通过智能技术生成

实验原理:

DPCM,即差分预测编码调制,是一种很典型的预测编码系统,其系统框图如下:

利用DPCM将信源进行预测编码调制的流程如下:输入的信源与上一信源的重建值做差,将该差值经量化后输出,再对其熵编码可以使信源码率下降。需要注意的是,由于做差时需要上一个样本的重建值,因此在该预测编码系统中内嵌了一个解码系统。即量化后的差值经过反量化,再与当前样本的预测值(即上一样本的重建值)相加,得到当前样本的重建值。

整个过程中由于量化引入了误差。

在该系统中最重要的两个组成部分为量化器和预测器。本实验中采用8bit均匀量化,其引入的误差根据实验可看出并不是十分明显。若采用其他的量化方案如非均匀量化等,需要对其引入的失真进行评估,进行优化;本实验的预测器可采用左侧、上方、上下左右区均值等预测方案。

实验步骤:

1.先用一幅24位的真彩色图像生成原始的yuv

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值