Codeforces Round #483 (Div. 1) [Thanks, Botan Investments and Victor Shaburov!] B. XOR-pyramid

题目大意

定义函数 f ( b 1 , b 2 , ⋯   , b m ) = { b 1 m = 1 f ( b 1 ⨁ b 2 ⨁ ⋯ ⨁ b m ) m > 1 f(b_1,b_2,\cdots,b_m)=\left\{\begin{aligned}b_1 && m = 1 \\ f(b_1\bigoplus b_2 \bigoplus\cdots\bigoplus b_m) && m>1\\ \end{aligned} \right. f(b1,b2,,bm)=b1f(b1b2bm)m=1m>1
给出一个长度为 n n n的数组 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an
并给出 q q q个询问,
每次询问给出一个区间 [ l , r ] [l,r] [l,r],求字数列 a l , a l + 1 , ⋯   , a r a_l,a_{l+1},\cdots,a_r al,al+1,,ar中,最大的 f f f是多少。

时间限制

2s

数据范围

n ≤ 5000 n\le 5000 n5000
q ≤ 1 0 5 q\le 10^5 q105

题解

这题的关键就是如何快速求出 f f f
比较手推了一下 m = 1 , m = 2 , m = 3 , m = 4 , m = 5 m=1,m=2,m=3,m=4,m=5 m=1,m=2,m=3,m=4,m=5并没有发现任何规律,
不过再次细致地一步一步推到,很快就找到了 f f f的递推方法。
不妨设 f i , j f_{i,j} fi,j表示 f ( a i , a i + 1 , ⋯   , a j ) f\pod{a_i,a_{i+1},\cdots,a_{j}} f(ai,ai+1,,aj)
f i , j = f i , j − 1 ⨁ f i + 1 , j f_{i,j}=f_{i,j-1}\bigoplus f_{i+1 ,j} fi,j=fi,j1fi+1,j

求区间最大值就非常简单了。

Code

//#pragma GCC optimize (2)
//#pragma G++ optimize (2)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <vector>
#include <queue>
#define G getchar
#define ll long long
using namespace std;

ll read()
{
    char ch;
    for(ch = G();(ch < '0' || ch > '9') && ch != '-';ch = G());
    ll n = 0 , w;
    if (ch == '-')
    {
        w = -1;
        ch = G();
    } else w = 1;
    for(;'0' <= ch && ch <= '9';ch = G())n = (n<<1)+(n<<3)+ch-48;
    return n * w;
}

const int N = 5003;



int n , m , f[N][N] , a[N] , s[N];
int z[25] , x , y;
int b[N] , g[N];

int main()
{
    //freopen("i.in","r",stdin);
    //freopen("2.txt","w",stdout);

    z[0] = 1;
    for (int i = 1 ; i < 25 ; i++)
        z[i] = z[i - 1] * 2;

    n = read();
    for (int i = 1 ; i <= n ; i++)
    {
        a[i] = read();
        s[i] = s[i - 1] ^ a[i];
        f[i][i] = a[i];
    }

    for (int i = 1 ; i < n ; i++)
        for (int j = 1 ; j + i <= n ; j++)
            f[j][j + i] = f[j][j + i - 1] ^ f[j + 1][j + i];
    
    for (int i = 1 ; i <= n ; i++)
        for (int j = i - 1 ; j ; j--)
        {
            f[j][i] = max(f[j][i] , f[j][i - 1]);
            f[j][i] = max(f[j][i] , f[j + 1][i]);
        }

    m = read();
    for (int i = 0 ; i < m ; i++)
    {
        x = read();
        y = read();
        printf("%d\n", f[x][y]);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值