联想杯 - G. Gentle Jena

该博客介绍了如何利用单调栈解决一个关于数组前缀和与区间最值的问题。题目中要求计算特定函数的权值之和,并对一定模数取反,博主通过观察发现可以利用单调栈优化计算过程,将时间复杂度降低到线性。代码实现中展示了如何运用单调栈来快速计算每个位置的区间最值之和,从而高效地得出最终答案。
摘要由CSDN通过智能技术生成

题目大意

给出一个长度为 n n n的数组 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn
定义函数 f ( l , r ) = ∑ i = l r min ⁡ { b i } f(l,r)=\displaystyle\sum_{i=l}^r \min \{b_i\} f(l,r)=i=lrmin{bi}
定义权值 A i = ∑ 1 ≤ l ≤ r ≤ i f ( l , r ) A_i=\displaystyle\sum_{1\le l\le r\le i} f(l,r) Ai=1lrif(l,r)
A i A_i Ai 998244353 998244353 998244353取模。
A 1 ⨁ A 2 ⨁ ⋯ ⨁ A n A_1\bigoplus A_2\bigoplus\cdots\bigoplus A_n A1A2An

时间限制

2s

数据范围

n ≤ 1 0 7 n\le 10^7 n107

题解

考虑如何求 f f f,如果弄个线段树或者别的,也十分不方便。
再来考虑如何求 A i A_i Ai,不难发现 A i A_i Ai只比 A i − 1 A_{i-1} Ai1多了以 i i i为右端点的区间的 f f f值。
发现了这一点,就非常好办了。

考虑如何快速求出 f ( 1 , i ) , f ( 2 , i ) , ⋯   , f ( i , i ) f(1,i),f(2,i),\cdots,f(i,i) f(1,i),f(2,i),,f(i,i)
根据性质,就可以发现这些值是递减的,因此可以用一个单调栈维护。
整体时间复杂度就是 O ( n ) O(n) O(n)

Code

//#pragma GCC optimize (2)
//#pragma G++ optimize (2)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <queue>
#include <map>
#define ll long long
#define G getchar
using namespace std;

ll read()
{
    char ch;
    for(ch = G();ch < '0' || ch > '9';ch = G());
    ll n = 0;
    for(;'0' <= ch && ch <= '9';ch = G())n = (n<<1)+(n<<3)+ch-48;
    return n;
}

void write(ll x)
{
    if (x > 9)
    {
        write(x / 10);
        putchar(x % 10 + 48);
    }
    else putchar(x + 48);
}

const int N = 10000007;
const int mo = 998244353;

ll n , p , x , y , z , b , a;
ll ans , sum , s;
ll zz[N] , id[N] , top;

int main()
{
    //freopen("i.in","r",stdin);
    //freopen("e.out","w",stdout);
    
    n = read();
    p = read();
    x = read();
    y = read();
    z = read();
    b = read();
    a = ans = b;
    zz[1] = b;
    id[1] = 1;
    top = 1;
    s = sum = b;

    for (int i = 2 ; i <= n ; i++)
    {
        b = (a * x + b * y + z) % p;
        for ( ; top && zz[top] > b ; top--)
        {
            sum = sum - zz[top] * (id[top] - id[top - 1]) % mo;
            if (sum < 0) sum = sum + mo;
        }

        top++;
        zz[top] = b;
        id[top] = i;
        sum = sum + b * (id[top] - id[top - 1]) % mo;
        if (sum >= mo) sum = sum - mo;
        s = s + sum;
        if (s >= mo) s = s - mo;
        a = s;

        ans = ans ^ a;
        //printf("%lld %lld\n", b , a);
    }

    printf("%lld\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值