题目
输入
输出
样例输入
4 3 5
4 1 7 3
4 7 4 8
样例输出
59716
数据范围
分析
由于N很大,我们不可能就整个F数组全部算出来。
所以,我们只能考虑每个数对答案的贡献。
可以手推一下,找一下规律,这里就简单说一下。
设 ans=fN,N
那么
fN,N=1∗ans
fN,N−1=1∗a∗ans
fN−1,N=1∗b∗an
fN−1,N−1=2∗a∗b∗ans
可以通过这种方法找一下规律。
我们也可以从另一个方面去理解,理解它的几何意义。
一个点,向右一格就等同于×a;向下一格就等同于×b。
然后统计路径总数,通过组合数来计算。
ANS=∑ni=2Cn−i2∗n−i−2∗(li∗an−1∗bn−i+ti∗an−i∗bn−1)
取模的时候使用逆元。
- 一个优化:可以提前预处理阶乘。
code(c++)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <math.h>
#define ll long long
#define mo 1000000007
#define N 100003
using namespace std;
int a,b,n,t[N],l[N];
ll ans,A[N],B[N],_[2*N];
ll ksm(ll x,int y)
{
ll s=x,sum=1;
while(y)
{
if(y%2)sum=(sum*s)%mo;s=(s*s)%mo;y/=2;
}
return sum;
}
ll C(int n,int m){return((_[m]*ksm(_[n],mo-2))%mo*ksm(_[m-n],mo-2)%mo)%mo;}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++)
scanf("%d",&l[i]);
for(int i=1;i<=n;i++)
scanf("%d",&t[i]);
_[0]=A[0]=B[0]=1;
for(int i=1;i<=n;i++)
_[i]=_[i-1]*i%mo,A[i]=A[i-1]*a%mo,B[i]=B[i-1]*b%mo;
for(int i=n+1;i<=2*n;i++)
_[i]=_[i-1]*i%mo;
for(int i=2;i<=n;i++)
ans=(ans+C(n-i,2*n-i-2)*((A[n-1]*B[n-i])%mo*l[i]%mo+(A[n-i]*B[n-1])%mo*t[i]%mo))%mo;
printf("%lld",ans);
}