JZOJ4709. 【NOIP2016提高A组模拟8.17】Matrix

题目

这里写图片描述

输入

这里写图片描述

输出

这里写图片描述

样例输入

4 3 5
4 1 7 3
4 7 4 8

样例输出

59716

数据范围

这里写图片描述

分析

由于N很大,我们不可能就整个F数组全部算出来。

所以,我们只能考虑每个数对答案的贡献。

可以手推一下,找一下规律,这里就简单说一下。

ans=fN,N

那么

fN,N=1ans

fN,N1=1aans

fN1,N=1ban

fN1,N1=2abans

可以通过这种方法找一下规律。

我们也可以从另一个方面去理解,理解它的几何意义。

一个点,向右一格就等同于×a;向下一格就等同于×b。

然后统计路径总数,通过组合数来计算。

ANS=ni=2Cni2ni2(lian1bni+tianibn1)

取模的时候使用逆元。

  • 一个优化:可以提前预处理阶乘。

code(c++)

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <math.h>
#define ll long long
#define mo 1000000007
#define N 100003
using namespace std;
int a,b,n,t[N],l[N];
ll ans,A[N],B[N],_[2*N];
ll ksm(ll x,int y)
{
    ll s=x,sum=1;
    while(y)
    {
        if(y%2)sum=(sum*s)%mo;s=(s*s)%mo;y/=2;
    }
    return sum;
}
ll C(int n,int m){return((_[m]*ksm(_[n],mo-2))%mo*ksm(_[m-n],mo-2)%mo)%mo;}
int main()
{
    scanf("%d%d%d",&n,&a,&b);
    for(int i=1;i<=n;i++)
        scanf("%d",&l[i]);
    for(int i=1;i<=n;i++)
        scanf("%d",&t[i]);
    _[0]=A[0]=B[0]=1;
    for(int i=1;i<=n;i++)
        _[i]=_[i-1]*i%mo,A[i]=A[i-1]*a%mo,B[i]=B[i-1]*b%mo;
    for(int i=n+1;i<=2*n;i++)
        _[i]=_[i-1]*i%mo;
    for(int i=2;i<=n;i++)
        ans=(ans+C(n-i,2*n-i-2)*((A[n-1]*B[n-i])%mo*l[i]%mo+(A[n-i]*B[n-1])%mo*t[i]%mo))%mo;
    printf("%lld",ans);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值