题解
题目要求两行的方案数,
那假设它存在第三行,
它的颜色就是除了上面两种颜色之外剩下的颜色。
假设知道了第三行的方案数,
那么答案就是这个方案数*2。
考虑如何求出第三行的方案数,
假设开头颜色为X,其数量为x,
那么两两相邻的X可以将这个第三行分成x段或者x-1段(最后是否以X结尾)。
假设第三行被分成了g段,
再枚举一个e,表示长度为偶数的段数。
那么也就是说有g-e段的长度为奇数。
设在这些长度为奇数的段中,开头为Y的有oy个,开头为Z的有oz个。
可以知道它们之间要满足的关系试。
oy+oz=g-e(开头总数等于奇数段数)
y-oy=z-oz(出去开头剩下的Y,Z需要两两配对)
有了这些就可以算现在的方案数:
oy个Y开头放在g-e个长度奇数的段中:
Coyg−e
C
g
−
e
o
y
e个偶数段在g个段中:
Ceg
C
g
e
剩下的Y(Z)放在g个段中:
Cy−oy−ey−oy−e+g−1
C
y
−
o
y
−
e
+
g
−
1
y
−
o
y
−
e
(隔板问题)
每一个偶数段的开头,为Y或者X:
2e
2
e
把这些全部乘起来就可以了。
code
#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define ll long long
#define N 1000003
using namespace std;
const int mo=1000000007;
ll jc[N],ny[N],ans;
int m,r,g,b;
ll ksm(ll x,int y)
{
ll s=1;
for(;y;y>>=1,x=x*x%mo)
if(y&1)s=s*x%mo;
return s;
}
ll C(int x,int y)
{
if(x>y)return 0;
return jc[y]*ny[x]%mo*ny[y-x]%mo;
}
void calc(int g,int e,int y,int z)
{
if(((g-e+y-z)&1) || ((g-e+z-y)&1))return;
int oy=(g-e+y-z)>>1,oz=(g-e+z-y)>>1,r=y-e-oy;
if(oy<0 || oz<0)return;
ans=(ans+C(g-1,r+g-1)*C(e,g)%mo*C(oy,g-e)%mo*ksm(2,e)%mo)%mo;
}
void work(int x,int y,int z)
{
int g=x;
for(int e=0;e<=g;e++)
calc(g,e,y,z);
g=x-1;
for(int e=0;e<=g;e++)
calc(g,e,y,z);
}
int main()
{
ans=jc[0]=1;
for(int i=1;i<N;i++)
jc[i]=jc[i-1]*i%mo;
ny[N-1]=ksm(jc[N-1],mo-2);
for(int i=N-1;i;i--)
ny[i-1]=ny[i]*i%mo;
scanf("%d%d%d%d",&m,&r,&g,&b);
r=m-r;g=m-g;b=m-b;
ans=0;
work(r,g,b);
work(g,r,b);
work(b,g,r);
printf("%lld",ans*2%mo);
return 0;
}