df.head()如何才能将信息显示完全

首先我们输入这些代码进行读取

import pandas as pd
import numpy as np
from matplotlib import  pyplot as plt
file_path='C:/Users/ming/Desktop/DataAnalysis-master/day05/code/IMDB-Movie-Data.csv'
df=pd.read_csv(file_path)
print(df.info())
print(df.head(1))

得到以下结果
在这里插入图片描述
可以看出显示不完全
接下来开始我们的表演
添加一句代码即可

# 显示所以的列
pd.set_option('display.max_columns', None)

行列完全显示代码

#显示所有列
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#显示宽度无限长
pd.set_option('display.width', None)

修改后的代码如下

import pandas as pd
import numpy as np
from matplotlib import  pyplot as plt
file_path='C:/Users/ming/Desktop/DataAnalysis-master/day05/code/IMDB-Movie-Data.csv'
df=pd.read_csv(file_path)
print(df.info())
# 显示所以的列
pd.set_option('display.max_columns', None)
print(df.head(1))

得到如下结果
在这里插入图片描述
可以看到显示完全

当你有两个CSV文件,其中有一些列是完全相同的,但是还有些列是不完全相同的,你可以使用pandas库来合并这些数据,并且可视化。以下是一个基本的步骤和代码示例: 1. **导入所需的库**: ```python import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ``` 2. **加载CSV文件**: ```python df1 = pd.read_csv('file1.csv') df2 = pd.read_csv('file2.csv') ``` 假设`file1.csv`有一个额外的列`extra_column`,而在`file2.csv`里没有: ```python df1.head() ``` ``` common_column extra_column 0 a A 1 b B 2 c C 3 d D 4 e E ``` ```python df2.head() ``` ``` common_column other_column 0 f F 1 g G 2 h H 3 i I 4 j J ``` 3. **合并数据**: ```python merged_df = pd.merge(df1, df2, on='common_column', how='outer') # 'how='outer' 保留所有行,即使在另一个表中没有匹配 ``` 4. **处理新列**: 如果你想要合并后的数据保持一致性,对于`extra_column`,你可以选择填充一个新的列或者忽略它。例如,填充`NaN`: ```python merged_df['extra_column_y'] = merged_df[['extra_column_x', 'other_column']].apply(lambda x: x[0] if pd.notnull(x[0]) else x[1], axis=1) ``` 5. **创建图表**: 如果你想要比较`common_column`的分布,可以用直方图或者箱线图展示: ```python plt.figure(figsize=(10, 6)) sns.histplot(data=merged_df, x='common_column', hue='extra_column_y', multiple="dodge") plt.title('Common Column Distribution by Extra Column') plt.show() ``` 这里的`hue`参数会根据`extra_column_y`分组显示不同颜色的直方图。 请注意,这只是一个基础示例,实际应用中可能需要根据数据的具体情况进行更复杂的预处理和图形设计。另外,如果`extra_column`的含义和`other_column`不同,你可能需要先进行数据清洗或数据转换才能有效地合并。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值