下面的程序实现用到C++和OpenCV。
先定义一个用于存储圆的数据的结构体CircleData:
struct CircleData
{
Point2f center;
int radius;
};
假设不共线的三点分别为pt1,pt2,pt3,通过三个点求圆的圆心center和半径radius有两个方法:
方法一:通过其中两点的中垂线交点求圆心
CircleData findCircle1(Point2f pt1, Point2f pt2, Point2f pt3)
{
//定义两个点,分别表示两个中点
Point2f midpt1, midpt2;
//求出点1和点2的中点
midpt1.x = (pt2.x + pt1.x) / 2;
midpt1.y = (pt2.y + pt1.y) / 2;
//求出点3和点1的中点
midpt2.x = (pt3.x + pt1.x) / 2;
midpt2.y = (pt3.y + pt1.y) / 2;
//求出分别与直线pt1pt2,pt1pt3垂直的直线的斜率
float k1 = -(pt2.x - pt1.x) / (pt2.y - pt1.y);
float k2 = -(pt3.x - pt1.x) / (pt3.y - pt1.y);
//然后求出过中点midpt1,斜率为k1的直线方程(既pt1pt2的中垂线):y - midPt1.y = k1( x - midPt1.x)
//以及过中点midpt2,斜率为k2的直线方程(既pt1pt3的中垂线):y - midPt2.y = k2( x - midPt2.x)
//定义一个圆的数据的结构体对象CD
CircleData CD;
//连立两条中垂线方程求解交点得到:
CD.center.x = (midpt2.y - midpt1.y - k2* midpt2.x + k1*midpt1.x) / (k1 - k2);
CD.center.y = midpt1.y + k1*(midpt2.y - midpt1.y - k2*midpt2.x + k2*midpt1.x) / (k1 - k2);
//用圆心和其中一个点求距离得到半径:
CD.radius = sqrtf((CD.center.x - pt1.x)*(CD.center.x - pt1.x) + (CD.center.y - pt1.y)*(CD.center.y - pt1.y));
return CD;
}
方法二:
通过三个点到圆心距离相等建立方程:
(pt1.x-center.x)²-(pt1.y-center.y)²=radius² 式子(1)
(pt2.x-center.x)²-(pt2.y-center.y)²=radius² 式子(2)
(pt3.x-center.x)²-(pt3.y-center.y)²=radius² 式子(3)
式子(1)-式子(2)得:
pt1.x²+pt2.y²-pt1.y²-pt2.x²+2*center.x*pt2.x-2*center.x*pt1.x+2*center.y*pt1.y-2*center.y*pt2.y-=0
式子(2)-式子(3)得:
pt2.x²+pt3.y²-pt2.y²-pt3.x²+2*center.x*pt3.x-2*center.x*pt2.x+2*center.y*pt2.y-2*center.y*pt3.y-=0
整理上面的两个式子得到:
(2*pt2.x-2*pt1.x)*center.x+(2*pt1.y-2*pt2.y)*center.y=pt1.y²+pt2.x²-pt1.x²-pt2.y²
(2*pt3.x-2*pt2.x)*center.x+(2*pt2.y-2*pt3.y)*center.y=pt2.y²+pt3.x²-pt2.x²-pt3.y²
令:
A1=2*pt2.x-2*pt1.x B1=2*pt1.y-2*pt2.y C1=pt1.y²+pt2.x²-pt1.x²-pt2.y²
A2=2*pt3.x-2*pt2.x B2=2*pt2.y-2*pt3.y C2=pt2.y²+pt3.x²-pt2.x²-pt3.y²
则上述方程组变成一下形式:
A1*center.x+B1*center.y=C1;
A2*center.x+B2*center.y=C2
联立以上方程组可以求出:
center.x = (C1*B2 - C2*B1) / A1*B2 - A2*B1;
center.y = (A1*C2 - A2*C1) / A1*B2 - A2*B1;
(为了方便编写程序,令temp = A1*B2 - A2*B1)
具体程序实现函数为:
CircleData findCircle2(Point2f pt1, Point2f pt2, Point2f pt3)
{
//令:
//A1 = 2 * pt2.x - 2 * pt1.x B1 = 2 * pt1.y - 2 * pt2.y C1 = pt1.y² + pt2.x² - pt1.x² - pt2.y²
//A2 = 2 * pt3.x - 2 * pt2.x B2 = 2 * pt2.y - 2 * pt3.y C2 = pt2.y² + pt3.x² - pt2.x² - pt3.y²
float A1, A2, B1, B2, C1, C2, temp;
A1 = pt1.x - pt2.x;
B1 = pt1.y - pt2.y;
C1 = (pow(pt1.x, 2) - pow(pt2.x, 2) + pow(pt1.y, 2) - pow(pt2.y, 2)) / 2;
A2 = pt3.x - pt2.x;
B2 = pt3.y - pt2.y;
C2 = (pow(pt3.x, 2) - pow(pt2.x, 2) + pow(pt3.y, 2) - pow(pt2.y, 2)) / 2;
//为了方便编写程序,令temp = A1*B2 - A2*B1
temp = A1*B2 - A2*B1;
//定义一个圆的数据的结构体对象CD
CircleData CD;
//判断三点是否共线
if (temp == 0){
//共线则将第一个点pt1作为圆心
CD.center.x = pt1.x;
CD.center.y = pt1.y;
}
else{
//不共线则求出圆心:
//center.x = (C1*B2 - C2*B1) / A1*B2 - A2*B1;
//center.y = (A1*C2 - A2*C1) / A1*B2 - A2*B1;
CD.center.x = (C1*B2 - C2*B1) / temp;
CD.center.y = (A1*C2 - A2*C1) / temp;
}
CD.radius = sqrtf((CD.center.x - pt1.x)*(CD.center.x - pt1.x) + (CD.center.y - pt1.y)*(CD.center.y - pt1.y));
return CD;
}
测试主程序为:
int _tmain(int argc, _TCHAR* argv[])
{
//初始化一张图片,全部为黑色
Mat dst(500, 500, CV_8UC3, Scalar(0, 0, 0));
//随便定义三个点
Point2f p1, p2, p3;
p1.x = 150;
p1.y = 150;
p2.x = 200;
p2.y = 200;
p3.x = 250;
p3.y = 100;
//画出三个点
circle(dst, p1, 2, Scalar(0, 0, 255), 1, 8, 0);
circle(dst, p2, 2, Scalar(0, 0, 255), 1, 8, 0);
circle(dst, p3, 2, Scalar(0, 0, 255), 1, 8, 0);
//定义一个圆的数据结构体对象
CircleData CD;
//用第一种方法找圆
CD = findCircle1(p1, p2, p3);
circle(dst, CD.center, 2, Scalar(255, 0, 0), 1, 8, 0);//画出圆心
circle(dst, CD.center, CD.radius, Scalar(0, 255, 0), 1, 8, 0);//画出圆
imshow("circle", dst);
waitKey();
//用第二种方法找圆
CD = findCircle2(p1, p2, p3);
circle(dst, CD.center, 2, Scalar(255, 255, 0), 1, 8, 0);//画出圆心
circle(dst, CD.center, CD.radius, Scalar(0, 255, 255), 1, 8, 0);//画出圆
imshow("circle", dst);
waitKey();
return 0;
}
运行结果:
第一种方法:
第二种方法: