三点确定圆心算法推导

已知a,b,c三点求过这三点的圆心坐标

a ( x 1 , y 1 ) a(x_1, y_1) a(x1,y1) b ( x 2 , y 2 ) b(x_2, y_2) b(x2,y2) c ( x 3 , y 3 ) c(x_3, y_3) c(x3,y3)

确认三点是否共线

叉积计算方式
v → ( X 1 , Y 1 ) × u → ( X 2 , Y 2 ) = X 1 Y 2 − X 2 Y 1 \overrightarrow{v}(X_1, Y_1) \times \overrightarrow{u}(X_2, Y_2) = X_1Y_2 - X_2Y_1 v (X1,Y1)×u (X2,Y2)=X1Y2X2Y1
使用叉积判断三个点是否共线
a b → = ( ( x 2 − x 1 ) , ( y 2 − y 1 ) ) a c → = ( ( x 3 − x 1 ) , ( y 3 − y 1 ) ) \overrightarrow{ab} = ((x_2- x_1) , (y_2- y_1)) \\ \overrightarrow{ac} = ((x_3- x_1) , (y_3- y_1)) ab =((x2x1),(y2y1))ac =((x3x1),(y3y1))
带入上方可到的:
v a l u e = ( x 2 − x 1 ) ( y 3 − y 1 ) − ( x 3 − x 1 ) ( y 2 − y 1 ) v a l u e = x 2 y 3 − x 2 y 1 − x 1 y 3 + x 1 y 1 − x 3 y 2 + x 3 y 1 + x 1 y 2 − x 1 y 1 \begin{aligned} value &= (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) \\ value &= x_2y_3 - x_2y_1-x_1y_3+x_1y_1-x_3y_2+x_3y_1+x_1y_2-x_1y_1 \\ \end{aligned} valuevalue=(x2x1)(y3y1)(x3x1)(y2y1)=x2y3x2y1x1y3+x1y1x3y2+x3y1+x1y2x1y1
整合后得到
v a l u e = x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) value = x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) value=x1(y2y3)+x2(y3y1)+x3(y1y2)
{ v a l u e < 0 点 b 在 a c → 右边 v a l u e > 0 点 b 在 a c → 左边 v a l u e = 0 三点共线 \begin{cases} value & < 0 &点b在\overrightarrow{ac}右边\\ value & > 0 &点b在\overrightarrow{ac}左边\\ value & = 0 &三点共线 \\ \end{cases} valuevaluevalue<0>0=0bac 右边bac 左边三点共线

不共线的三点才可以确认一个圆

三点求解圆心

已知圆的方程为
( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 (x-x_0)^2+(y-y_0)^2=r^2 (xx0)2+(yy0)2=r2

假设圆心坐标为 O ( a , b ) O(a,b) O(a,b)带入三点可以得到下列方程
{ ( x 1 − a ) 2 + ( y 1 − b ) 2 = r 2 ① ( x 2 − a ) 2 + ( y 2 − b ) 2 = r 2 ② ( x 3 − a ) 2 + ( y 3 − b ) 2 = r 2 ③ \begin{cases} (x_1 - a)^2+(y_1 - b)^2=r^2 &①\\ (x_2 - a)^2+(y_2 - b)^2=r^2 &②\\ (x_3 - a)^2+(y_3 - b)^2=r^2 &③\\ \end{cases} (x1a)2+(y1b)2=r2(x2a)2+(y2b)2=r2(x3a)2+(y3b)2=r2
拆解后可得
{ x 1 2 − 2 x 1 a + a 2 + y 1 2 − 2 y 1 b + b 2 = r 2 ① x 2 2 − 2 x 2 a + a 2 + y 2 2 − 2 y 2 b + b 2 = r 2 ② x 3 2 − 2 x 3 a + a 2 + y 3 2 − 2 y 3 b + b 2 = r 2 ③ \begin{cases} x_1^2 - 2x_1a+a^2 + y_1^2-2y_1b+b^2=r^2 &①\\ x_2^2 - 2x_2a+a^2 + y_2^2-2y_2b+b^2=r^2 &②\\ x_3^2 - 2x_3a+a^2 + y_3^2-2y_3b+b^2=r^2 &③\\ \end{cases} x122x1a+a2+y122y1b+b2=r2x222x2a+a2+y222y2b+b2=r2x322x3a+a2+y322y3b+b2=r2
使用①-②②-③。构造两个方程组
{ a ( x 2 − x 1 ) + b ( y 2 − y 1 ) = ( x 2 2 + y 2 2 ) − ( x 1 2 + y 1 2 ) 2 ① − ② a ( x 3 − x 2 ) + b ( y 3 − y 2 ) = ( x 3 2 + y 3 2 ) − ( x 2 2 + y 2 2 ) 2 ② − ③ \begin{cases} a(x_2-x_1)+b(y_2-y_1)=\frac{(x_2^2+y_2^2)-(x_1^2+y_1^2)}{2} &①-②\\ a(x_3-x_2)+b(y_3-y_2)=\frac{(x_3^2+y_3^2)-(x_2^2+y_2^2)}{2} &②-③\\ \end{cases} {a(x2x1)+b(y2y1)=2(x22+y22)(x12+y12)a(x3x2)+b(y3y2)=2(x32+y32)(x22+y22)

我们可以给计算方程简化一下
A 1 = x 2 − x 1 B 1 = y 2 − y 1 A 2 = x 3 − x 2 B 2 = y 3 − y 2 C 1 = ( x 2 2 + y 2 2 ) − ( x 1 2 + y 1 2 ) 2 C 2 = ( x 3 2 + y 3 2 ) − ( x 2 2 + y 2 2 ) 2 \begin{aligned} A_1 &= x_2-x_1 \\ B_1 &= y_2-y_1 \\ A_2 &= x_3-x_2 \\ B_2 &= y_3-y_2 \\ C_1 &= \frac{(x_2^2+y_2^2)-(x_1^2+y_1^2)}{2} \\ C_2 &= \frac{(x_3^2+y_3^2)-(x_2^2+y_2^2)}{2} \\ \end{aligned} A1B1A2B2C1C2=x2x1=y2y1=x3x2=y3y2=2(x22+y22)(x12+y12)=2(x32+y32)(x22+y22)
则可的方程组
A 1 a + B 1 b = C 1 A 2 a + B 2 b = C 2 A_1a+B_1b=C_1 \\ A_2a+B_2b=C_2 \\ A1a+B1b=C1A2a+B2b=C2
使用矩阵求解这个方程组
( A 1 B 1 A 2 B 2 ) ( a b ) = ( C 1 C 2 ) \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \\ \end{pmatrix} \begin{pmatrix} a \\ b \\ \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \\ \end{pmatrix} (A1A2B1B2)(ab)=(C1C2)
可得
( a b ) = 1 A 1 B 2 − A 2 B 1 ( B 2 − B 1 − A 2 A 1 ) ( C 1 C 2 ) \begin{pmatrix} a \\ b \\ \end{pmatrix} = \frac{1}{ A_1B_2-A_2B_1 } \begin{pmatrix} B_2 & -B_1 \\ -A_2 & A_1 \\ \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \end{pmatrix} (ab)=A1B2A2B11(B2A2B1A1)(C1C2)

( a b ) = ( B 2 A 1 B 2 − A 2 B 1 − B 1 A 1 B 2 − A 2 B 1 − A 2 A 1 B 2 − A 2 B 1 A 1 A 1 B 2 − A 2 B 1 ) ( C 1 C 2 ) = ( B 2 C 1 − B 1 C 2 A 1 B 2 − A 2 B 1 A 1 C 2 − A 2 C 1 A 1 B 2 − A 2 B 1 ) \begin{pmatrix} a \\ b \\ \end{pmatrix} = \begin{pmatrix} \frac{B_2}{A_1B_2-A_2B_1} & \frac{-B_1}{A_1B_2-A_2B_1} \\ \frac{-A_2}{A_1B_2-A_2B_1} & \frac{A_1}{A_1B_2-A_2B_1} \\ \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \end{pmatrix} = \begin{pmatrix} \frac{B_2C_1-B_1C_2}{A_1B_2-A_2B_1}\\ \frac{A_1C_2-A_2C_1}{A_1B_2-A_2B_1}\\ \end{pmatrix} (ab)=(A1B2A2B1B2A1B2A2B1A2A1B2A2B1B1A1B2A2B1A1)(C1C2)=(A1B2A2B1B2C1B1C2A1B2A2B1A1C2A2C1)

这样我们就得到了圆心 O ( a , b ) O(a,b) O(a,b)的坐标,同时我们也发现了一个很奇特的现象
上面再做共线条判断的时候我们求了叉积
v a l u e = x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) value = x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) value=x1(y2y3)+x2(y3y1)+x3(y1y2)
而我们求解的a,b的分母我带入后会发现
A 1 B 2 − A 2 B 1 = x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) A_1B_2-A_2B_1 = x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) A1B2A2B1=x1(y2y3)+x2(y3y1)+x3(y1y2)

是不是很玄学hhhhh,有知道原理的大佬欢迎评论区解答。

代码实现

typedef struct _GL2_fPoint {
    float x;
    float y;
} GL2_fPoint;

// 计算通过三点的圆的圆心和半径
bool circle_from_three_points(const GL2_fPoint& p1, const GL2_fPoint& p2, const GL2_fPoint& p3, float& cx, float& cy, float& r) {
    float x1 = p1.x, y1 = p1.y;
    float x2 = p2.x, y2 = p2.y;
    float x3 = p3.x, y3 = p3.y;

    float A = x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2);
    if (std::abs(A) < 1e-6f) {
        return false;
    }

    float B = (x1 * x1 + y1 * y1) * (y3 - y2) + (x2 * x2 + y2 * y2) * (y1 - y3) + (x3 * x3 + y3 * y3) * (y2 - y1);
    float C = (x1 * x1 + y1 * y1) * (x2 - x3) + (x2 * x2 + y2 * y2) * (x3 - x1) + (x3 * x3 + y3 * y3) * (x1 - x2);
    float D = (x1 * x1 + y1 * y1) * (x3 * y2 - x2 * y3) + (x2 * x2 + y2 * y2) * (x1 * y3 - x3 * y1) + (x3 * x3 + y3 * y3) * (x2 * y1 - x1 * y2);

    cx = -B / (2 * A);
    cy = -C / (2 * A);
    r = std::sqrt((x1 - cx) * (x1 - cx) + (y1 - cy) * (y1 - cy));
    
    return true;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值