GEE 案例——TVDI(Temperature Vegetation Dryness Index)指数

目录

简介

方法论

代码解释

函数

案例代码

单景影像的TVDI

影像集合批量计算TVDI

引用

结果


简介

本文中代码包含两个可用于计算 TVDI 的主要函数。其中一个函数用于仅根据一幅 NDVI 和一幅 LST 图像生成 TVDI(singleTVDI),另一个函数用于为多幅 NDVI 和多幅 LST 图像生成 TVDI(collectionTVDI)。这些函数可以导出 可由外部代码访问。

TVDI(Temperature Vegetation Dryness Index)指数是一种用于衡量地表温度、植被覆盖和干旱程度的指标。它结合了地表温度和植被指数(如NDVI)的信息,通过计算两者的差异来评估地表的干旱程度。

TVDI指数的计算公式为:
TVDI = (NDVI - BT) / (NDVI + BT)
其中,NDVI代表植被指数(Normalized Difference Vegetation Index),BT代表地表温度(Brightness Temperature)。通常&#x

### 实现 TVDI 的计算 TVDITemperature Vegetation Dryness Index)是一种基于植被指数(NDVI 或 EVI)和地表温度(LST)的关系来评估干旱程度的指标。其核心思想是通过构建 NDVI 和 LST 的散点图,在该空间中定义干边和湿边,从而量化某一区域的干燥程度。 #### 数据准备 为了在 GEE 平台中实现 TVDI 计算,需要获取 Landsat 卫星影像中的波段数据用于计算 NDVI 和 LST。具体来说: - **NDVI (Normalized Difference Vegetation Index)** 可以通过红光波段(Band 4)和近红外波段(Band 5)计算得出[^2]。 - **LST (Land Surface Temperature)** 则可以通过热红外波段(如 Band 10)以及大气校正模型得到[^1]。 以下是完整的代码框架,展示如何在 GEE 中实现 TVDI 的计算过程。 ```javascript // 定义研究区域 var roi = ee.Geometry.Rectangle([78, 18, 80, 20]); // 加载 Landsat 8 影像集合 var dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') .filterDate('2020-01-01', '2020-12-31') // 时间范围筛选 .filterBounds(roi); // 空间范围筛选 // 获取最近的一幅影像 var image = ee.Image(dataset.sort('CLOUD_COVER').first()); // 计算 NDVI var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI'); // 地表温度 (LST) 计算函数 function calculateLST(band10) { var k1 = 774.89; // 常数 K1 对于 Band 10 var k2 = 1321.08; // 常数 K2 对于 Band 10 // 辐射亮度转换为开尔文温度 var rad = band10.multiply(0.0003342).add(0.1); var lst = rad.pow(-1).multiply(k2).subtract(k1).divide(100); // 转换为摄氏度 return lst.rename('LST'); } // 提取 Band 10 并计算 LST var band10 = image.select('B10'); var lst = calculateLST(band10); // 合并 NDVI 和 LST 图层 var combined = image.addBands(ndvi).addBands(lst); // 构建干边和湿边关系 var dryEdge = combined.reduceRegion({ reducer: ee.Reducer.max(), geometry: roi, scale: 30, }).getNumber('NDVI'); var wetEdge = combined.reduceRegion({ reducer: ee.Reducer.min(), geometry: roi, scale: 30, }).getNumber('NDVI'); // TVDI 计算逻辑 var tvdi = combined.expression( '(lst - minLst) / (maxLst - minLst)', { lst: combined.select('LST'), minLst: combined.select('LST').reduceRegion({reducer:ee.Reducer.min(),geometry:roi,scale:30}), maxLst: combined.select('LST').reduceRegion({reducer:ee.Reducer.max(),geometry:roi,scale:30}) }); Map.addLayer(tvdilayer, {min:0, max:1, palette:['blue','green','yellow','red']}, 'TVDI'); ``` 上述代码实现了以下功能: 1. 使用 `normalizedDifference` 方法计算 NDVI。 2. 将 Band 10 波段的数据转化为辐射亮度,并进一步转为地表温度(LST),其中涉及 Planck 方程的应用。 3. 结合 NDVI 和 LST 数据,分别提取最大值与最小值作为干边和湿边条件下的边界线参数。 4. 最终利用公式 `(LST - Min_LST) / (Max_LST - Min_LST)` 来计算 TVDI。 #### 注意事项 - 需要确保输入的研究区域 (`roi`) 已经被正确设置。 - 如果存在云覆盖,则可能影响最终的结果质量,因此建议先进行云掩膜处理后再执行分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值