偏相关系数:一般定义,线性回归和矩阵运算方法

偏相关系数:一般定义,线性回归和矩阵运算方法

因为在网上查都没有看到完整的解释,所以自己整理了一下供大家参考。

一般定义

偏相关系数是指计算两个向量的相关性,同时控制其他变量对这两个变量的影响。也就是排除其他变量的干扰,更准确地反映出两个变量之间的相关性。

假设有三个变量X,Y,Z,想要计算X和Y的在无Z影响下的偏相关系数 ρ X Y ⋅ Z {\rho _{XY \cdot Z}} ρXYZ,其定义的公式为:
ρ X Y ⋅ Z = r X Y − r X Z ⋅ r Y Z ( 1 − r X Z 2 ) ( 1 − r Y Z 2 ) {\rho _{XY \cdot Z}} = \frac{ { {r_{XY}} - {r_{XZ}} \cdot {r_{YZ}}}}{ {\sqrt {(1 - r_{XZ}^2)(1 - r_{YZ}^2)} }} ρXYZ=(1rXZ2)(1rYZ2) rXYrXZrYZ
其中 r X Y {r_{XY}} rXY r X Z {r_{XZ}} rXZ r Y Z {r_{YZ}} rYZ分别是是不同向量之间的皮尔逊相关系数。该公式通过减去Z对X和Y的影响,从而获得排除了Z的影响后的X和Y的纯粹的相关性。对于排除多个变量(控制变量)的影响的情况,可以使用线性回归或者矩阵运算来计算偏相关系数。

线性回归

对X回归Z: X = a 1 + a 2 Z + e 1 = X ^ + e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值