偏相关系数:一般定义,线性回归和矩阵运算方法
因为在网上查都没有看到完整的解释,所以自己整理了一下供大家参考。
一般定义
偏相关系数是指计算两个向量的相关性,同时控制其他变量对这两个变量的影响。也就是排除其他变量的干扰,更准确地反映出两个变量之间的相关性。
假设有三个变量X,Y,Z,想要计算X和Y的在无Z影响下的偏相关系数 ρ X Y ⋅ Z {\rho _{XY \cdot Z}} ρXY⋅Z,其定义的公式为:
ρ X Y ⋅ Z = r X Y − r X Z ⋅ r Y Z ( 1 − r X Z 2 ) ( 1 − r Y Z 2 ) {\rho _{XY \cdot Z}} = \frac{
{
{r_{XY}} - {r_{XZ}} \cdot {r_{YZ}}}}{
{\sqrt {(1 - r_{XZ}^2)(1 - r_{YZ}^2)} }} ρXY⋅Z=(1−rXZ2)(1−rYZ2)rXY−rXZ⋅rYZ
其中 r X Y {r_{XY}} rXY, r X Z {r_{XZ}} rXZ, r Y Z {r_{YZ}} rYZ分别是是不同向量之间的皮尔逊相关系数。该公式通过减去Z对X和Y的影响,从而获得排除了Z的影响后的X和Y的纯粹的相关性。对于排除多个变量(控制变量)的影响的情况,可以使用线性回归或者矩阵运算来计算偏相关系数。
线性回归
对X回归Z: X = a 1 + a 2 Z + e 1 = X ^ + e