【时间序列分析】10.偏相关系数与Levinson递推公式

十、偏相关系数与Levinson递推公式

1.对Yule-Walker方程的推广——偏相关系数

在提出Yule-Walker方程时,我们提出过一个问题——既然 A R ( p ) {\rm AR}(p) AR(p)序列只需要 p p p个自相关系数就能够建立Yule-Walker方程,为什么要将这个方程延拓到 n n n阶呢?其实,在实际生活中,我们往往并不知道一个 A R ( p ) {\rm AR}(p) AR(p)序列的阶数,即我们不知道自回归系数一共有几个,在这种情况下,根本无法确定 p p p,自然不能直接得到 Γ p , γ p \Gamma_p,\boldsymbol \gamma_p Γp,γp具体的形态。本篇文章会解答这个问题。

首先我们将Yule-Walker方程的适用情况,从 A R ( p ) {\rm AR}(p) AR(p)序列推广到一切平稳序列 { X t } \{X_t\} {Xt},假设平稳序列有自协方差函数 { γ k } \{\gamma_k\} {γk}和自协方差矩阵 Γ n \Gamma_n Γn,则关于 a n \boldsymbol a_n an的方程
γ n = Γ n a n \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n γn=Γnan
被称为 { γ k } \{\gamma_k\} {γk} n n n阶Yule-Walker方程,这里的 a n = ( a n , 1 , a n , 2 , ⋯   , a n , n ) ′ \boldsymbol a_n=(a_{n,1},a_{n,2},\cdots,a_{n,n})' an=(an,1,an,2,,an,n)被称为 n n nYule-Walker系数。如果 Γ n \Gamma_n Γn正定则 a n = Γ n − 1 γ n \boldsymbol a_n=\Gamma_{n}^{-1}\boldsymbol \gamma_n an=Γn1γn,此时的Yule-Walker系数由自协方差函数完全决定了。

需要注意这里的Yule-Walker系数与 A R ( p ) {\rm AR}(p) AR(p)序列的不一样。在 A R ( p ) {\rm AR}(p) AR(p)序列中,如果 n ≥ p n\ge p np n n n阶Yule-Walker系数 a n \boldsymbol a_n an的前 p p p个值就是其自回归系数,后面的值都是0,而在 n < p n<p n<p的情况则不一定是自回归系数的前 n n n个值。这里定义的 n n n阶Yule-Walker系数,是对任何平稳序列 { X t } \{X_t\} {Xt} { γ k } \{\gamma_k\} {γk}都存在的,是方程的解向量,自然不存在自回归系数这一概念。

并且, n n n阶Yule-Walker系数是依赖于 n n n的,在没有给出 n n n时是无法对其进行求解的。而且,不同阶数的 a n \boldsymbol a_n an同位置分量往往数值也不同。比如 A R ( p ) {\rm AR}(p) AR(p)序列的 p p p阶Yule-Walker系数是自回归系数,但小于 p p p阶时,如 a 1 = γ 1 / γ 0 \boldsymbol a_1=\gamma_1/\gamma_0 a1=γ1/γ0,就不等于第一个自回归系数 a 1 a_1 a1。不过作为特例, A R ( p ) {\rm AR}(p) AR(p)序列在 p p p阶以上的Yule-Walker系数的同位置分量是一样的。

最后,由于 Γ n \Gamma_n Γn正定时 a n \boldsymbol a_n an { γ k } \{\gamma_k\} {γk}完全确定,所以我们给 Γ n \Gamma_n Γn正定时的 n n n阶Yule-Walker系数起一个名字——偏相关系数。我们接下来将探讨Yule-Walker系数的应用。

2.最优线性预测与Yule-Walker系数

要探究Yule-Walker系数的作用,我们先对上一篇最后提到的完全可预测性作出延伸。虽然对于极大多数平稳序列, X n + 1 X_{n+1} Xn+1不能由 X 1 , ⋯   , X n X_1,\cdots,X_{n} X1,,Xn线性表示,但我们可以用这 n n n个向量的线性组合 X n + 1 X_{n+1} Xn+1作出估计,也就是用 X 1 , ⋯   , X n X_1,\cdots,X_{n} X1,,Xn的线性组合作为 X n + 1 X_{n+1} Xn+1估计量

不同的线性组合会产生不同的估计量,不同的估计量之间必然存在优劣,一个常用来评判估计量好坏的指标是均方误差,即 E ( X n + 1 − ∑ j = 1 n b j X i ) 2 {\rm E}(X_{n+1}-\sum\limits_{j=1}^nb_jX_i)^2 E(Xn+1j=1nbjXi)2。在这么多 X n + 1 X_{n+1} Xn+1的估计量中,存在一个均方误差最小的线性组合,它被称为最优线性预测

巧合的是,最优线性预测对应的系数,与Yule-Walker系数 a n \boldsymbol a_n an完全一致,也就是满足 γ n = Γ n a n \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n γn=Γnan的这组系数,下面我们给出定理及其证明:

最优线性预测:如果 a n \boldsymbol a_n an { X t } \{X_t\} {Xt} n n n阶Yule-Walker系数,则 X n + 1 X_{n+1} Xn+1的最优线性预测是
X ^ n + 1 = ∑ j = 1 n a n , j X t + 1 − j = a n ′ X n . X n = ( X n , ⋯   , X 1 ) ′ . \hat X_{n+1}=\sum_{j=1}^n a_{n,j}X_{t+1-j}=\boldsymbol a_n'\boldsymbol X_n .\quad \boldsymbol X_n=(X_n,\cdots,X_1)'. X^n+1=j=1nan,jXt+1j=anXn.Xn=(Xn,,X1).
将预测的均方误差设置为
σ n 2 = Δ E ( X n + 1 − a n ′ X n ) 2 . \sigma_n^2\stackrel \Delta={\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2. σn2=ΔE(Xn+1anXn)2.
现在对此定理作出证明。任取一组常数 b n \boldsymbol b_n bn,其线性预测为 b n ′ X n \boldsymbol b_n'\boldsymbol X_n bnXn,则有
E ( X n + 1 − b n ′ X n ) 2 = E ( X n + 1 − a n ′ X n + ( a n ′ − b n ) ′ X n ) 2 = E ( X n + 1 − a n ′ X n ) 2 + E [ ( a n − b n ) ′ X n ] 2 + 2 E ( X n + 1 − a n ′ X n ) [ ( a n − b n ) ′ X n ] = E ( X n + 1 − a n ′ X n ) 2 + E [ ( a n − b n ) ′ X n ] 2 + 2 E ( X n + 1 − a n ′ X n ) X n ′ ( a n − b n ) = E ( X n + 1 − a n ′ X n ) 2 + E [ ( a n − b n ) ′ X n ] 2 + 2 ( γ n − a n ′ Γ n ) ( a n − b n ) = E ( X n + 1 − a n ′ X n ) 2 + E [ ( a n − b n ) ′ X n ] 2 ≥ E ( X n + 1 − a n ′ X n ) 2 . \begin{aligned} &{\rm E}(X_{n+1}-\boldsymbol b_n'\boldsymbol X_n)^2\\ =&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n+(\boldsymbol a_n'-\boldsymbol b_n)'\boldsymbol X_n)^2\\ =&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2+{\rm E}[(\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n]^2+2{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)[(\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n]\\ =&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2+{\rm E}[(\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n]^2+2{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)\boldsymbol X_n'(\boldsymbol a_n-\boldsymbol b_n)\\ =&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2+{\rm E}[(\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n]^2+2(\boldsymbol \gamma_n-\boldsymbol a_n'\Gamma_n)(\boldsymbol a_n-\boldsymbol b_n)\\ =&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2+{\rm E}[(\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n]^2\\ \ge&{\rm E}(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n)^2. \end{aligned} =====E(Xn+1bnXn)2E(Xn+1anXn+(anbn)Xn)2E(Xn+1anXn)2+E[(anbn)Xn]2+2E(Xn+1anXn)[(anbn)Xn]E(Xn+1anXn)2+E[(anbn)Xn]2+2E(Xn+1anXn)Xn(anbn)E(Xn+1anXn)2+E[(anbn)Xn]2+2(γnanΓn)(anbn)E(Xn+1anXn)2+E[(anbn)Xn]2E(Xn+1anXn)2.
这里第三行到第四行,是将 ( a n − b n ) ′ X n (\boldsymbol a_n-\boldsymbol b_n)'\boldsymbol X_n (anbn)Xn进行转置,因为1阶矩阵转置等于自身;第四行到第五行是自然的期望向自协方差函数转化;第五行到第六行是因为 γ n = a n ′ Γ n \boldsymbol \gamma_n=\boldsymbol a_n'\Gamma_n γn=anΓn

这个定理说明,偏相关系数的一个重要作用,是用历史的信息对未来做出预测,这种预测是最佳线性预测。

3.Yule-Walker系数的计算——Levinson递推

要求解Yule-Walker系数很简单,只要找到 Γ n \Gamma_n Γn的逆矩阵,计算 a n = Γ n − 1 γ n \boldsymbol a_n=\Gamma_n^{-1}\boldsymbol \gamma_n an=Γn1γn即可,但这种简单仅仅是理论上的,因为随着阶数 n n n的增长, Γ n \Gamma_n Γn的求逆计算复杂度会很快增加。为了简化计算,我们通常采用Levinson递推公式,它用来递推地计算Yule-Walker系数与最优线性预测的均方误差。

Levinson递推公式:如果 Γ n + 1 \Gamma_{n+1} Γn+1正定,则对 1 ≤ k ≤ n 1\le k\le n 1kn
{ a 1 , 1 = γ 1 γ 0 , σ 0 2 = γ 0 , − − − − σ k 2 = σ k − 1 2 ( 1 − a k , k 2 ) , a k + 1 , k + 1 = γ k + 1 − ∑ j = 1 k γ j a k , k + 1 − j γ 0 − ∑ j = 1 k γ j a k , j = γ k + 1 − γ k a k , 1 − ⋯ − γ 1 a k , k γ 0 − γ 1 a k , 1 − ⋯ − γ k a k , k , a k + 1 , j = a k , j − a k + 1 , k + 1 a k , k + 1 − j , 1 ≤ j ≤ k . \left\{ \begin{array}l a_{1,1}=\dfrac{\gamma_1}{\gamma_0},\\ \sigma^2_0=\gamma_0,\\ ----\\ \sigma_k^2=\sigma_{k-1}^2(1-a_{k,k}^2),\\ a_{k+1,k+1}=\dfrac{\gamma_{k+1}-\sum_{j=1}^k \gamma_ja_{k,k+1-j}}{\gamma_0-\sum_{j=1}^k\gamma_ja_{k,j}}=\dfrac{\gamma_{k+1}-\gamma_ka_{k,1}-\cdots-\gamma_1a_{k,k}}{\gamma_0-\gamma_1a_{k,1}-\cdots-\gamma_ka_{k,k}},\\ a_{k+1,j}=a_{k,j}-a_{k+1,k+1}a_{k,k+1-j},1\le j\le k. \end{array} \right. a1,1=γ0γ1,σ02=γ0,σk2=σk12(1ak,k2),ak+1,k+1=γ0j=1kγjak,jγk+1j=1kγjak,k+1j=γ0γ1ak,1γkak,kγk+1γkak,1γ1ak,k,ak+1,j=ak,jak+1,k+1ak,k+1j,1jk.
这里 σ k 2 \sigma_k^2 σk2是用 X k \boldsymbol X_k Xk预测 X ^ k + 1 \hat X_{k+1} X^k+1时的均方误差。

看起来Levinson递推公式非常硕大,但具有非常好记的规律。首先,前两个式子是递推基础,可以直接通过计算得到;后三个式子是递推关系,即在获得上一行Yule-Walker系数和均方误差后,可以通过这三个式子计算下一行的Yule-Walker系数和均方误差。

然后看计算顺序,在获得上一行的所有Yule-Walker系数后,先计算的是下一行中多出来的位置的系数值,再计算下一行的其他Yule-Walker系数值,最后计算下一行的预测均方误差。在整个计算过程中的Yule-Walker系数计算顺序可以如下呈现(均方误差在获得某行所有数值后计算):
a 1 , 1 → a 2 , 2 → a 2 , ⋅ → a 3 , 3 → a 3 , ⋅ → ⋯ → a k , k → a k , ⋅ → a k + 1 , k + 1 → a k + 1 , ⋅ → ⋯ a_{1,1}\to a_{2,2}\to a_{2,\cdot}\to a_{3,3}\to a_{3,\cdot}\to \cdots\to a_{k,k}\to a_{k,\cdot}\to a_{k+1,k+1}\to a_{k+1,\cdot}\to \cdots a1,1a2,2a2,a3,3a3,ak,kak,ak+1,k+1ak+1,
最后观察计算形式,在 a k + 1 , k + 1 a_{k+1,k+1} ak+1,k+1的计算中,分子是协方差倒着排列 γ k + 1 \gamma_{k+1} γk+1开始与顺序排列的Y-W相乘的,而分母是协方差正着排列 γ 0 \gamma_0 γ0开始与顺序排列的Y-W系数相乘的;在 a k + 1 , j a_{k+1,j} ak+1,j的计算中,被减数是上一行对应位置的Y-W系数,减数则要用刚算出来的 a k + 1 , k + 1 a_{k+1,k+1} ak+1,k+1与上一行对称位置的Y-W系数相乘;最后是预测均方误差,是在上一行的均方误差基础上乘上 ( 1 − a k + 1 , k + 1 2 ) (1-a_{k+1,k+1}^2) (1ak+1,k+12),可以看出,随着阶数的增长,均方误差不会增长

4.偏相关系数的性质

偏相关系数是 Γ n \Gamma_n Γn正定时的Y-W系数,它满足最小相位条件,即如果 Γ n + 1 \Gamma_{n+1} Γn+1正定,则
1 − ∑ j = 1 n a n , j z j ≠ 0 , ∣ z ∣ ≤ 1. 1-\sum_{j=1}^na_{n,j}z^j\ne 0,|z|\le 1. 1j=1nan,jzj=0,z1.
现在我们可以回到最初提出的问题:在 A R ( p ) {\rm AR}(p) AR(p)自回归系数不定阶时,如何确定其阶数并计算其自回归系数?归根到底,就是阶数的确定。为了解决这个问题,我们需要知道 A R ( p ) {\rm AR}(p) AR(p)序列偏相关系数的一个重要性质—— p p p后截尾。

p p p后截尾性:对于平稳序列,如果在 n ≥ p n\ge p np时偏相关系数满足
a n , n = { a p , n = p , 0 , n > p . a_{n,n}=\left\{ \begin{array}l a_p,&n=p,\\ 0,&n>p. \end{array} \right. an,n={ap,0,n=p,n>p.
就称它的偏相关系数是 p p p后截尾的。

A R ( p ) {\rm AR}(p) AR(p)的判定:零均值平稳序列 { X t } \{X_t\} {Xt} A R ( p ) {\rm AR}(p) AR(p)序列的充要条件是,它的偏相关系数 a n , n a_{n,n} an,n p p p后截尾。

这个定理给出了 A R ( p ) {\rm AR}(p) AR(p)序列的重要判定方式,即计算其 n n n阶偏相关系数,如果观察到在某一位后都是0,则这个序列是 A R ( p ) {\rm AR}(p) AR(p)序列,并且自然地得到它的阶数。

证明其充分性,记 a p = ( a p , 1 , ⋯   , a p , p ) ′ = ( a 1 , ⋯   , a p ) ′ \boldsymbol a_p=(a_{p,1},\cdots,a_{p,p})'=(a_1,\cdots,a_p)' ap=(ap,1,,ap,p)=(a1,,ap),既然它是 p p p截尾的,那么 a p + k , p + k = 0 a_{p+k,p+k}=0 ap+k,p+k=0,由Levinson递推公式,得到
a p + 1 , j = a p , j − a p + 1 , p + 1 a p , p + 1 − j = a j , 1 ≤ j ≤ p , a p + k , j = a p + k − 1 , j = ⋯ = a p , j = a j , 1 ≤ j ≤ p , k ≥ 2 , a p + k , j = a j , j = 0 , p < j ≤ p + k . a_{p+1,j}=a_{p,j}-a_{p+1,p+1}a_{p,p+1-j}=a_j,\quad 1\le j\le p,\\ a_{p+k,j}=a_{p+k-1,j} =\cdots=a_{p,j}=a_j,\quad 1\le j\le p,k\ge2,\\ a_{p+k,j}=a_{j,j}=0,\quad p<j\le p+k. ap+1,j=ap,jap+1,p+1ap,p+1j=aj,1jp,ap+k,j=ap+k1,j==ap,j=aj,1jp,k2,ap+k,j=aj,j=0,p<jp+k.
这说明对 n ≥ p n\ge p np,总有
a n ′ = ( a n , 1 , a n , 2 , ⋯   , a n , n ) = ( a 1 , ⋯   , a p , 0 , ⋯   , 0 ) . \boldsymbol a_n'=(a_{n,1},a_{n,2},\cdots,a_{n,n})=(a_1,\cdots,a_p,0,\cdots,0). an=(an,1,an,2,,an,n)=(a1,,ap,0,,0).
那么由Yule-Walker方程, k ≥ 1 k\ge1 k1 γ k = ∑ j = 1 p a j γ k − j \gamma_k=\sum\limits_{j=1}^p a_j\gamma_{k-j} γk=j=1pajγkj。现定义 ε t = X t − ∑ j = 1 p a j X t − j \varepsilon_t=X_t-\sum\limits_{j=1}^pa_jX_{t-j} εt=Xtj=1pajXtj,则如果 { ε t } \{\varepsilon_t\} {εt}是白噪声,就说明 X t X_t Xt A R ( p ) {\rm AR}(p) AR(p)序列。
E ε t = E ( X t − ∑ j = 1 p a j X t − j ) = 0 ; D ε t = E ε t 2 = σ p 2 > 0. {\rm E}\varepsilon_t={\rm E}(X_t-\sum_{j=1}^p a_jX_{t-j})=0;\\ {\rm D}\varepsilon_t={\rm E}\varepsilon_t^2=\sigma_p^2>0. Eεt=E(Xtj=1pajXtj)=0;Dεt=Eεt2=σp2>0.
先证明 ε t \varepsilon_t εt t t t时刻之前时刻 s s s时候的 X s X_s Xs无关,也就是 ∀ t > s \forall t>s t>s
E ( ε t X s ) = E [ ( X t − ∑ j = 1 p a j X t − j ) X s ] = γ t − s − ∑ j = 1 p a j γ t − s − j = 0 , {\rm E}(\varepsilon_tX_s)={\rm E}\left[\left(X_t-\sum_{j=1}^pa_j X_{t-j} \right) X_s\right]=\gamma_{t-s}-\sum_{j=1}^pa_j\gamma_{t-s-j}=0, E(εtXs)=E[(Xtj=1pajXtj)Xs]=γtsj=1pajγtsj=0,
于是有 ∀ t > s \forall t>s t>s
E ( ε t ε s ) = E [ ε t ( X s − ∑ j = 1 p a j X s − j ) ] = 0. {\rm E}(\varepsilon_t\varepsilon_s)={\rm E}\left[\varepsilon_t\left(X_s-\sum_{j=1}^pa_jX_{s-j} \right) \right]=0. E(εtεs)=E[εt(Xsj=1pajXsj)]=0.
所以 { ε t } \{\varepsilon_t\} {εt} W N ( 0 , σ p 2 ) {\rm WN}(0,\sigma_p^2) WN(0,σp2),并且我们之前证明了偏相关系数满足最小相位条件(稳定性条件),所以 { X t } \{X_t\} {Xt} A R ( p ) {\rm AR}(p) AR(p)序列。

反过来,如果零均值平稳序列 { X t } \{X_t\} {Xt} A R ( p ) {\rm AR}(p) AR(p)序列,则由Yule-Walker方程,当 n ≥ p n\ge p np时自然有
γ n = Γ n a n , a n = ( a 1 , ⋯   , a p , 0 , ⋯   , 0 ) . \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n,\boldsymbol a_n=(a_1,\cdots,a_p,0,\cdots,0). γn=Γnan,an=(a1,,ap,0,,0).
这就说明偏相关系数是 p p p后截尾的。

有了这个定理,我们验证某序列是平稳的就有了固定的模式:先根据其历史信息计算自协方差函数的估计值 { γ ^ k } \{\hat \gamma_k\} {γ^k},如果它是收敛的,则根据 γ ^ k \hat \gamma_k γ^k计算偏相关系数的估计值 { a ^ n , n } \{\hat a_{n,n}\} {a^n,n},如果它是 p p p后截尾的就说明原序列是平稳序列,且阶数就是截尾位置 p p p

回顾总结

  1. Yule-Walker方程是对任何平稳序列的方程: γ n = Γ n a n \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n γn=Γnan,方程的解 a n \boldsymbol a_n an称为Yule-Walker系数。

  2. 如果 Γ n \Gamma_n Γn是正定矩阵,则 a n = Γ − n γ n \boldsymbol a_n=\Gamma^{-n}\boldsymbol \gamma_n an=Γnγn,即Yule-Walker系数由自协方差函数唯一确定,此时的Yule-Walker系数被称为偏相关系数。

  3. Yule-Walker系数可以用来预测平稳序列。如果已知前 n n n个历史信息,则 X n + 1 X_{n+1} Xn+1的最优线性预测为
    a n ′ X n = ∑ j = 1 ∞ a n , j X n + 1 − j . \boldsymbol a_n'\boldsymbol X_n=\sum_{j=1}^\infty a_{n,j}X_{n+1-j}. anXn=j=1an,jXn+1j.
    均方误差为
    σ n 2 = E ( X n + 1 − a n ′ X n ) 2 . \sigma_n^2={\rm E}\left(X_{n+1}-\boldsymbol a_n'\boldsymbol X_n \right)^2. σn2=E(Xn+1anXn)2.

  4. 在已知自协方差函数时,用来计算偏相关系数的常用方法不是求正定矩阵 Γ n + 1 \Gamma_{n+1} Γn+1逆,而是用Levinson递推公式,其形式是
    { a 1 , 1 = γ 1 / γ 0 , σ 1 2 = γ 0 , σ k 2 = σ k − 1 2 ( 1 − a k , k 2 ) , a k + 1 , k + 1 = γ k + 1 − a k , 1 γ k − ⋯ − a k , k γ 1 γ 0 − a k , 1 γ 1 − ⋯ − a k , k γ k , a k + 1 , j = a k , j − a k + 1 , k + 1 a k , k + 1 − j . \left\{ \begin{array}l a_{1,1}=\gamma_1/\gamma_0,\\ \sigma^2_1=\gamma_0,\\ \sigma_k^2=\sigma_{k-1}^2(1-a_{k,k}^2),\\ a_{k+1,k+1}=\dfrac{\gamma_{k+1}-a_{k,1}\gamma_k-\cdots-a_{k,k}\gamma_1}{\gamma_0-a_{k,1}\gamma_1-\cdots-a_{k,k}\gamma_k},\\ a_{k+1,j}=a_{k,j}-a_{k+1,k+1}a_{k,k+1-j}. \end{array} \right. a1,1=γ1/γ0,σ12=γ0,σk2=σk12(1ak,k2),ak+1,k+1=γ0ak,1γ1ak,kγkγk+1ak,1γkak,kγ1,ak+1,j=ak,jak+1,k+1ak,k+1j.

  5. p p p后截尾指的是 a n , n a_{n,n} an,n n > p n>p n>p时恒为0。对于零均值平稳序列 { X t } \{X_t\} {Xt},它是 A R ( p ) {\rm AR}(p) AR(p)序列的充要条件是它的偏相关系数 p p p后截尾。

  6. 验证 A R ( p ) {\rm AR}(p) AR(p)序列的一般步骤:根据样本求自协方差函数的估计值、观察自协方差函数的收敛性、用Levinson递推公式计算偏相关系数的估计值、观察偏相关系数的后截尾性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值