特征方程:
这要是符合如下形式的递推式都可以把递推式变成等比数列。
递推式:X(n+2)=C1X(n+1)+C2X(n) (1)
假设两个数 r,s有如下式子成立:
X(n+2)-rX(n+1)=s[X(n+1)-rXn] (2)
把(2)式变化为如下:X(n+2)=(s+r)X(n+1)-srXn (3)对比:(1)式和(2)式得出下面两个值:
C1=s+r
C2=-sr如果知道C1,C2就可以知道s和r的值也就可以求解出数列X(n+2)-rX(n+1)的等比s来,
这样就可以求解出等比数列的递推式。
(其中,消去s就导出 r*r-C1*r-C2=0就是我们要的特征方程式)