遗传算法解决城市TSP问题

本文介绍了遗传算法在解决旅行商问题(TSP)中的应用。遗传算法通过模拟生物进化过程,逐步优化解的适应度,寻找TSP的最小路径。文章详细阐述了遗传算法的基本原理、主要步骤、特点,并分析了种群规模、迭代次数、城市数量、交叉概率和变异概率等参数对解的影响。实验表明,适当调整这些参数能提高算法的精度和效率。
摘要由CSDN通过智能技术生成

一、遗传算法与TSP问题简介

1.遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现。因此,在一开始需要实现从表现型到基因型的映射即编码工作。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。
其基本流程如图所示:
在这里插入图片描述
2.旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

二、遗传算法的基本原理

遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定,具有内在的隐并行性和更好的全局寻优能力,采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

三、遗传算法的主要步骤

1.初始化种群:在可行域内随机产生若干个解,称其为初始种群。
2.对种群内的每个解进行适应度评估,评价每个个体对环境的适应程度强弱。
3.适者生存,不适者淘汰,运用随机数等方式,将不适合的个体淘汰,适合的保留。
4.通过交叉互换、变异等方式对中云进行扰动,实质上就是在可行域内进行搜索,搜索出最适合环境的解。
上述的环境是指目标函数,需要求解最优值的函数,每个个体就是每个可行解,适应度评估就是将可行解带入函数进行计算然后对比其大小,如果可行解代入函数的结果最优,那这个解就是最优解。优胜劣汰是对优秀解的保留,较差解的淘汰,交叉和变异就是对解进行扰动,以进一步提高解的优度。

四、遗传算法的特点

1.遗传算法只对个体的基因进行操作,所以无论实际问题多么复杂,其稳定性都不会受到太大的影响。
2.遗传算法的搜索过程属于并行计算,能够很好地搜索解空间。
3.稳定性、鲁棒性强,适用于非线性、高维复杂优化问题。

五、算法实现代码模块

1.连点画图函数plot_route.m

function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
    x0=a(R(i-1),1);
    y0=a(R(i-1),2);
    x1=a(R(i),1);
    y1=a(R(i),2);
    xx=[x0,x1];
    yy=[y0,y1];
    plot(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值