章节大概
这一章的题目讲的是归纳法,采用到的例子有:选择排序,插入排序,基数排序,整数幂,多项式求值,生成排列,多数元素(见课本)。
归纳推理定义:归纳推理是一种由个别到一般的推理。由一定程度的关于个别事物的观点过渡到范围较大的观点,由特殊具体的事例推导出一般原理、原则的解释方法。
归纳一般可以化为包括所有递归算法设计技术,如:分治法和动态规划,而这章中的所有题目和算法,都采用的尾递归。
题目(1)
简单分析
1.全排列:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
2.字典序:按字母顺序排列的方法 。
3.采用递归的方法:将未标记的数字填入存放数据的数组num的第step位,并将填过的数据标记,然后递归往后面走(step+1位),直到num的前N位全部递归过,然后就输出返回。
该方法时间复杂度为O(n!),空间复杂度为Θ(n)
代码
#include <iostream>
using namespace std;
int num[10],sign[10],N;
void ergodic(int step)
{
if (step == N+1)
{
for(int tmp = 1; tmp <= N; tmp++)
cout << num[tmp];
cout << '\n';
return;
}
for (int tmp = 1; tmp <= N; tmp++)
{
if (sign[tmp] == 0)
{
num[step] = tmp;
sign[tmp] = 1;
ergodic(step + 1);
sign[tmp]=0;
}
}
return;
}
int main()
{
cin >> N;
ergodic(1);
return 0;
}
题目(2)
这题题目表述个人觉得有歧义,后面备注详细说明一下。
简单分析
1.排序:和上题目一样的分析方法