线性代数 --- 三种计算矩阵行列式的方法之三 LU分解法

本文详细介绍了如何使用LU分解法来计算矩阵的行列式,包括LU分解的性质、矩阵行交换对行列式的影响,以及MATLAB中计算行列式的方法。通过解释高斯消元与LU分解的关系,证明了下三角矩阵L的行列式为1,并讨论了行交换导致的符号变化。同时,提供了拉普拉斯和莱布尼兹展开法作为计算行列式的其他方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 三种计算矩阵的行列式的方法之三 LU分解法

       用LU分解法计算矩阵的行列式,是我无意中在MATLAB中看到的。这是他的官方文档中,计算行列式的函数(det(A))中介绍的方法,我看过以后觉得非常有趣就记下来了。

这是官方说明文档的截图:

 这是我对MATLAB所使用的算法的个人记录:


 关于下三角矩阵L的行列式一定等于+-1的一些说明

 证明:在LU分解中,下三角矩阵L的行列式一定是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值