[初识行列式]行列式的计算

本文介绍了行列式的计算方法,包括消零化基本型、爪形和异爪形行列式、拉普拉斯展开式、范德蒙行列式以及利用数学归纳法和递推法。通过多个例题详细解释了每种方法的运用,例如使用拉普拉斯展开计算特定行列式,以及如何利用范德蒙公式解决相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前一章整理了行列式的基本定义,接下来我们可以进行列式的计算.

1. 消零化基本型

  • 适用条件:
    • 某行(列)已有足够多的0元素
    • 阶数不高
  1. 例题1. 求n阶行列式 ∣ a b 0 . . . 0 0 0 a b . . . 0 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . . a b b 0 0 . . . . 0 a ∣ n ∗ n = ? \begin{vmatrix} a & b &0 &...&0&0 \\ 0 & a &b&...&0&0\\ 0&0&a&...&0&0\\ ...&....&....&...&...&...\\ 0&0&0&....&a&b\\ b&0&0&....&0&a \end{vmatrix}_{n*n}=? a00...0bba0....000ba....00....................000...a0000...bann=?
    解:按照第一列展开,有:
    D n = ∣ a b 0 . . . 0 0 0 a b . . . 0 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . . a b b 0 0 . . . . 0 a ∣ = a ∣ a b . . . 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . . a b 0 0 . . . . 0 a ∣ + ( − 1 ) n + 1 b ∣ b 0 . . . 0 0 a b . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . . b 0 0 0 . . . . a b ∣ = a n + ( − 1 ) n + 1 b n D_n=\begin{vmatrix} a & b &0 &...&0&0 \\ 0 & a &b&...&0&0\\ 0&0&a&...&0&0\\ ...&....&....&...&...&...\\ 0&0&0&....&a&b\\ b&0&0&....&0&a \end{vmatrix}=a\begin{vmatrix} a &b&...&0&0\\ 0&a&...&0&0\\ ....&....&...&...&...\\ 0&0&....&a&b\\ 0&0&....&0&a \end{vmatrix}\\+(-1)^{n+1}b\begin{vmatrix} b &0&...&0&0\\ a&b&...&0&0\\ ....&....&...&...&...\\ 0&0&....&b&0\\ 0&0&....&a&b \end{vmatrix}\\=a^n+(-1)^{n+1}b^n Dn=a00...0bba0....000ba....00....................000...a0000...ba=aa0....00ba....00.................00...a000...ba+(1)n+1bba....000b....00.................00...ba00...0b=an+(1)n+1bn

2. 爪形和异爪形行列式

  • 爪形行列式:
    • 斜爪消平爪
  • 异爪形行列式
    • n<=4时,直接展开
    • n>=4时,用递推法
  1. 例题2.异爪形行列式:求 ∣ λ − 1 0 0 0 λ − 1 0 0 0 λ − 1 4 3 2 λ + 1 ∣ = ? \begin{vmatrix} \lambda&-1&0&0\\ 0&\lambda&-1&0\\ 0&0&\lambda&-1\\ 4&3&2&\lambda+1 \end{vmatrix}=? λ0041λ0301λ2001λ+1=?
    解:直接按照第四行展开有:
    D n = ∣ λ − 1 0 0 0 λ − 1 0 0 0 λ − 1 4 3 2 λ + 1 ∣ = 4 ∗ ( − 1 ) 1 + 4 ∗ ∣ − 1 0 0 λ − 1 0 0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值