前一章整理了行列式的基本定义,接下来我们可以进行列式的计算.
1. 消零化基本型
- 适用条件:
- 某行(列)已有足够多的0元素
- 阶数不高
- 例题1. 求n阶行列式 ∣ a b 0 . . . 0 0 0 a b . . . 0 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . . a b b 0 0 . . . . 0 a ∣ n ∗ n = ? \begin{vmatrix} a & b &0 &...&0&0 \\ 0 & a &b&...&0&0\\ 0&0&a&...&0&0\\ ...&....&....&...&...&...\\ 0&0&0&....&a&b\\ b&0&0&....&0&a \end{vmatrix}_{n*n}=? ∣∣∣∣∣∣∣∣∣∣∣∣a00...0bba0....000ba....00....................000...a0000...ba∣∣∣∣∣∣∣∣∣∣∣∣n∗n=?
解:按照第一列展开,有:
D n = ∣ a b 0 . . . 0 0 0 a b . . . 0 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . . a b b 0 0 . . . . 0 a ∣ = a ∣ a b . . . 0 0 0 a . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . . a b 0 0 . . . . 0 a ∣ + ( − 1 ) n + 1 b ∣ b 0 . . . 0 0 a b . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . . b 0 0 0 . . . . a b ∣ = a n + ( − 1 ) n + 1 b n D_n=\begin{vmatrix} a & b &0 &...&0&0 \\ 0 & a &b&...&0&0\\ 0&0&a&...&0&0\\ ...&....&....&...&...&...\\ 0&0&0&....&a&b\\ b&0&0&....&0&a \end{vmatrix}=a\begin{vmatrix} a &b&...&0&0\\ 0&a&...&0&0\\ ....&....&...&...&...\\ 0&0&....&a&b\\ 0&0&....&0&a \end{vmatrix}\\+(-1)^{n+1}b\begin{vmatrix} b &0&...&0&0\\ a&b&...&0&0\\ ....&....&...&...&...\\ 0&0&....&b&0\\ 0&0&....&a&b \end{vmatrix}\\=a^n+(-1)^{n+1}b^n Dn=∣∣∣∣∣∣∣∣∣∣∣∣a00...0bba0....000ba....00....................000...a0000...ba∣∣∣∣∣∣∣∣∣∣∣∣=a∣∣∣∣∣∣∣∣∣∣a0....00ba....00.................00...a000...ba∣∣∣∣∣∣∣∣∣∣+(−1)n+1b∣∣∣∣∣∣∣∣∣∣ba....000b....00.................00...ba00...0b∣∣∣∣∣∣∣∣∣∣=an+(−1)n+1bn
2. 爪形和异爪形行列式
- 爪形行列式:
斜爪消平爪
- 异爪形行列式
- n<=4时,
直接展开
- n>=4时,用
递推法
- n<=4时,
- 例题2.异爪形行列式:求 ∣ λ − 1 0 0 0 λ − 1 0 0 0 λ − 1 4 3 2 λ + 1 ∣ = ? \begin{vmatrix} \lambda&-1&0&0\\ 0&\lambda&-1&0\\ 0&0&\lambda&-1\\ 4&3&2&\lambda+1 \end{vmatrix}=? ∣∣∣∣∣∣∣∣λ004−1λ030−1λ200−1λ+1∣∣∣∣∣∣∣∣=?
解:直接按照第四行展开有:
D n = ∣ λ − 1 0 0 0 λ − 1 0 0 0 λ − 1 4 3 2 λ + 1 ∣ = 4 ∗ ( − 1 ) 1 + 4 ∗ ∣ − 1 0 0 λ − 1 0 0