时间空间复杂度(二分查找和斐波那契数列)

时间复杂度
时间复杂度就是函数执行的基本操作次数(运算次数)
在实际中,我们通常考量的是这个函数的最坏运行情况,即最大运行时间。
使用 O 来标记最坏运行情况的渐进上界—— O的渐进表示法
需要注意的是 递归算法的时间复杂度:递归总次数*每次递归数

空间复杂度
最多占用的空间
同样使用O的渐进表示法
递归的空间复杂度:每次递归所开空间*深度

以二分查找(折半查 找为例)
#include <iostream>
#include <assert.h>
using namespace std;

//二分查找
int BinarySearch1(int a[], int key,int n)//非递归
//时间复杂度 O(log2 N)  空间复杂度O(1)
{
	assert(n >= 0);
	int left=0;
	int right=n;
	while (left <= right)
	{
		int mid = (left&right) + ((left^right) >> 1);

		if (key < a[mid])
		{
			right = mid - 1;
		}
		else if (key > a[mid])
		{
			left = mid + 1;

		}
		else
			return a[mid];
	}
	return NULL;
	
}
//递归
//时间复杂度:O(log2 N)空间复杂度:O(log2N )。
bool BinarySearch2(int a[], int key,int left, int right)
{
	int mid = (left+right)>>1;
	if (left <= right && key == a[mid])
		return true;
	else if (key != a[mid])
		return false;

	if(key < a[mid])
		BinarySearch2(a, key,left, mid);
	if (key>a[mid])
		BinarySearch2(a, key, mid, right);

}


void test1()
{
int a[] = { 1, 2, 3, 4, 5, 6 };
cout << BinarySearch1(a, 8, sizeof(a) / sizeof(a[0])) << endl;
//cout << BinarySearch2(a, 0, 0, sizeof(a) / sizeof(a[0])) << endl;
}




//斐波那契
//递归    时间复杂度O(2^N) 空间复杂度O(N)
int fib1(size_t n)
{
	return n < 2 ? n : fib1(n - 1) + fib1(n -2);
}
//非递归  时间复杂度O(N)空间复杂度O(1)
long long fibNonR(size_t n)
{
	size_t a1 = 0, a2 = 1, a3 = n;
	for (long long i = 2; i <= n;++i)
	{
		a3 = a1 + a2;
		a1 = a2;
		a2 = a3;
	}
	return a3;
}

void test2()
{
	printf("%lld", fib1(10));
	//printf("%lld", fibNonR(10));
	getchar();
}

int main()
{
	test1();
	//test2();
	getchar();
	return 0;
}



  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值