YOLOv8双模态检测系统UI实现

使用PyQt5实现UI版YOLOv8双模态检测系统

优点:UI界面直接调用图像和视频检测功能

           显示检测结果信息,包含:class、box、conf

           视频检测时任意改变conf以及IOU值

1 Pycharm中安装PyQt5及使用Qt Designer设计UI界面

首先使用以下指令在虚拟环境中安装PyQt5

pip install PyQt5
pip install PyQt5-tools

Pycharm外部工具添加三个插件(重点)

打开Pycharm→Setting→Tools→External Tools

点击右上角“+”号,如下图依次添加

名称:QtDesigner

程序:管理虚拟环境文件夹中查找Designer(忘记路径可以在环境变量→系统变量→Path中查找)

工作目录:$FileDir$

名称:PyUIC

程序:自己创建虚拟环境中查找并添加Python(博主创建环境名为“YOLOv8”)

实参:-m PyQt5.uic.pyuic  $FileName$ -o $FileNameWithoutExtension$.py

工作目录:$FileDir$

名称:Pyrcc

程序:与PyUIC一致

实参:$FileName$ -o $FileNameWithoutExtension$_rc.py

工作目录:$FileDir$

三个插件安装完成,可参考下面链接安装

### YOLOv8 双模检测功能概述 YOLOv8 是 Ultralytics 开发的一个高效的目标检测框架,其设计旨在处理单模数据(通常是图像)。然而,在某些应用场景下,可能需要融合多源信息(例如红外摄像头和可见光摄像头的数据),这就是所谓的 **双模或多模目标检测**。 为了实现 YOLOv8双模检测功能,可以考虑以下几个方面: #### 数据预处理 在双模输入的情况下,通常会有两种不同类型的传感器数据作为模型的输入。这些数据可能是来自不同的物理域(如热成像与光学成像)。因此,第一步是对这两种数据进行标准化处理[^1]。这包括但不限于尺寸调整、颜色空间转换以及归一化操作。 ```python import cv2 from torchvision import transforms def preprocess(image, modality='rgb'): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) if modality == 'thermal': image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) return transform(image).unsqueeze(0) ``` 上述代码展示了如何针对不同类型(`rgb` 和 `thermal`)的输入应用适当的颜色通道扩展或灰度到 RGB 转换[^3]。 #### 模型架构修改 对于标准版本的 YOLOv8 来说,默认只接受单一模式的输入张量。要支持双模,则需对网络结构做出相应改动。一种常见方法是在早期阶段引入分支层来分别提取每种模特征;之后通过某种形式的跨模交互机制(比如注意力模块或者简单的拼接操作)将两者结合起来继续后续计算过程[^2]。 以下是基于 PyTorch 实现这种定制化的例子: ```python class DualModalityYoloV8(nn.Module): def __init__(self, base_model_path): super(DualModalityYoloV8, self).__init__() # Load pre-trained yolov8 model as backbone self.base_model = torch.load(base_model_path) # Define separate branches for each input type self.branch_1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding="same"), nn.ReLU() ) self.branch_2 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding="same"), nn.ReLU() ) # Fusion layer to combine features from both modalities self.fusion_layer = nn.Concatenate(dim=1) def forward(self, rgb_input, thermal_input): feat_rgb = self.branch_1(rgb_input) feat_thermal = self.branch_2(thermal_input) combined_features = self.fusion_layer([feat_rgb, feat_thermal]) output = self.base_model(combined_features) return output ``` 此部分定义了一个新的类继承自原始 YOLOv8 架构,并增加了两个额外卷积序列用于独立处理各自对应的感官信号流之前先单独抽取局部特性后再予以综合分析得出最终预测结果. #### 训练策略 当准备好了适配后的训练集后就可以按照常规流程来进行参数优化工作了不过需要注意一点就是由于现在存在两路并行路径所以可能会面临梯度消失等问题此时建议采用一些先进的正则项技术比如说权重衰减L2范数约束等手段加以缓解这些问题从而获得更加稳健可靠的性能表现. ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qiqidaguowang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值