Visual Servoing Trajectory Tracking of Nonholonomic Mobile Robots Without Direct Position Measuremen

1. 移动机器人(两轮差动)的运动方程

p˙(t)=x˙(t)y˙(t)θ˙(t)=cosθ(t)sinθ(t)0001(v(t)w(t))
p(t) — 机器人的运动轨迹,含在世界坐标系下的位置变化 x(t),y(t) ,朝向与世界坐标系 x 轴的夹角变化θ(t)
v(t),w(t) — 机器人的线速度与角速度


2. 轨迹偏差

Δp(t)=pd(t)p(t)=Δx(t)Δy(t)Δθ(t)=xd(t)x(t)yd(t)y(t)θd(t)θ(t)
e(t)=ex(t)ey(t)eθ(t)=cosθ(t)sinθ(t)0sinθ(t)cosθ(t)0001Δp(t)
Δp(t) — 轨迹偏差
e(t) — 转换后的偏差,含义如下图(非配图,符号不同),图中的 (xe,ye,θe) 对应上式中的 e(t) pr,pc 对应 pd(t),p(t)
这里写图片描述


第二个公式中的参数矩阵是满秩的,意味着若 e(t) 收敛于零,则 Δp(t) 收敛于零。
e(t) t 求导:
e˙(t)=vd(t)coseθ(t)vd(t)sineθ(t)wd(t)+100ey(t)ex(t)1(v(t)w(t))


ex(t) 为例证明上式(为表述方便,省去 (t) ):
ex=cosθ(xdx)+sinθ(ydy)
e˙x=θ˙sinθ(xdx)+θ˙cosθ(yd˙y)=eyw=eywv=eywv=eywv=eywv+vdcoseθ+cosθ(x˙dx˙)+sinθ(y˙dy˙)+x˙dcosθx˙cosθ+y˙dsinθy˙sinθ+x˙dcosθ+y˙dsinθ+x˙d(cosθdcoseθ+sinθdsineθ)+y˙d(sinθdcoseθcosθdsineθ)+(x˙dcosθd+y˙dsinθd)coseθ+(x˙dsinθdy˙dcosθd)sineθ
其中:
x˙dcosθd+y˙dsinθd=vd
x˙dsinθdy˙dcosθd=0


未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值